

ProjectQ

ProjectQ is an open-source software framework for quantum computing. It aims at providing tools which facilitate inventing, implementing, testing, debugging, and running quantum algorithms using either classical hardware or actual quantum devices.

The four core principles of this open-source effort are

	Open & Free: ProjectQ is released under the Apache 2 license

	Simple learning curve: It is implemented in Python and has an intuitive syntax

	Easily extensible: Anyone can contribute to the compiler, the embedded domain-specific language, and libraries

	Code quality: Code reviews, continuous integration testing (unit and functional tests)

	Please cite

	
	Damian S. Steiger, Thomas Häner, and Matthias Troyer “ProjectQ: An Open Source Software Framework for Quantum Computing” [arxiv:1612.08091 [https://arxiv.org/abs/1612.08091]]

	Thomas Häner, Damian S. Steiger, Krysta M. Svore, and Matthias Troyer “A Software Methodology for Compiling Quantum Programs” [arxiv:1604.01401 [http://arxiv.org/abs/1604.01401]]

	Contents

	
	Tutorial: Tutorial containing instructions on how to get started with ProjectQ.

	Examples: Example implementations of few quantum algorithms

	Code Documentation: The code documentation of ProjectQ.

Tutorial

Getting started

To start using ProjectQ, simply run

python -m pip install --user projectq

or, alternatively, clone/download [https://github.com/projectq-framework] this repo (e.g., to your /home directory) and run

cd /home/projectq
python -m pip install --user .

ProjectQ comes with a high-performance quantum simulator written in C++. Please see the detailed OS specific installation instructions below to make sure that you are installing the fastest version.

Note

The setup will try to build a C++-Simulator, which is much faster than the Python implementation. If it fails, you may use the –without-cppsimulator parameter, i.e.,

python -m pip install --user --global-option=--without-cppsimulator .

and the framework will use the slow Python simulator instead. Note that this only works if the installation has been tried once without the –without-cppsimulator parameter and hence all requirements are now installed. See the instructions below if you want to run larger simulations. The Python simulator works perfectly fine for the small examples (e.g., running Shor’s algorithm for factoring 15 or 21).

Note

If building the C++-Simulator does not work out of the box, consider specifying a different compiler. For example:

env CC=g++-5 python -m pip install --user projectq

Please note that the compiler you specify must support C++11!

Note

Please use pip version v6.1.0 or higher as this ensures that dependencies are installed in the correct order [https://pip.pypa.io/en/stable/reference/pip_install/#installation-order].

Note

ProjectQ should be installed on each computer individually as the C++ simulator compilation creates binaries which are optimized for the specific hardware on which it is being installed (potentially using our AVX version and -march=native). Therefore, sharing the same ProjectQ installation across different hardware can cause problems.

Detailed instructions and OS-specific hints

Ubuntu:

After having installed the build tools (for g++):

sudo apt-get install build-essential

You only need to install Python (and the package manager). For version 3, run

sudo apt-get install python3 python3-pip

When you then run

sudo pip3 install --user projectq

all dependencies (such as numpy and pybind11) should be installed automatically.

Windows:

It is easiest to install a pre-compiled version of Python, including numpy and many more useful packages. One way to do so is using, e.g., the Python3.5 installers from python.org [https://www.python.org/downloads] or ANACONDA [https://www.continuum.io/downloads]. Installing ProjectQ right away will succeed for the (slow) Python simulator (i.e., with the –without-cppsimulator flag). For a compiled version of the simulator, install the Visual C++ Build Tools and the Microsoft Windows SDK prior to doing a pip install. The built simulator will not support multi-threading due to the limited OpenMP support of msvc.

Should you want to run multi-threaded simulations, you can install a compiler which supports newer OpenMP versions, such as MinGW GCC and then manually build the C++ simulator with OpenMP enabled.

macOS:

These are the steps to install ProjectQ on a new Mac:

In order to install the fast C++ simulator, we require that your system has a C++ compiler (see option 3 below on how to only install the slower Python simulator via the –without-cppsimulator parameter)

Below you will find two options to install the fast C++ simulator. The first one is the easiest and requires only the standard compiler which Apple distributes with XCode. The second option uses macports to install the simulator with additional support for multi-threading by using OpenMP, which makes it slightly faster. We show how to install the required C++ compiler (clang) which supports OpenMP and additionally, we show how to install a newer python version.

Note

Depending on your system you might need to use sudo for the installation.

	Installation using XCode and the default python:

Install XCode by opening a terminal and running the following command:

xcode-select --install

Next, you will need to install Python and pip. See option 2 for information on how to install a newer python version with macports. Here, we are using the standard python which is preinstalled with macOS. Pip can be installed by:

sudo easy_install pip

Now, you can install ProjectQ with the C++ simulator using the standard command:

python -m pip install --user projectq

	Installation using macports:

Either use the standard python and install pip as shown in option 1 or better use macports to install a newer python version, e.g., Python 3.5 and the corresponding pip. Visit macports.org [https://www.macports.org/install.php] and install the latest version (afterwards open a new terminal). Then, use macports to install Python 3.5 by

sudo port install python35

It might show a warning that if you intend to use python from the terminal, you should also install

sudo port install py35-readline

Install pip by

sudo port install py35-pip

Next, we can install ProjectQ with the high performance simulator written in C++. First, we will need to install a suitable compiler with support for C++11, OpenMP, and instrinsics. The best option is to install clang 3.9 also using macports (note: gcc installed via macports does not work)

sudo port install clang-3.9

ProjectQ is now installed by:

env CC=clang-mp-3.9 env CXX=clang++-mp-3.9 python3.5 -m pip install --user projectq

	Installation with only the slow Python simulator:

While this simulator works fine for small examples, it is suggested to install the high performance simulator written in C++.

If you just want to install ProjectQ with the (slow) Python simulator and no compiler, then first try to install ProjectQ with the default compiler

python -m pip install --user projectq

which most likely will fail. Then, try again with the flag --without-cppsimulator:

python -m pip install --user --global-option=--without-cppsimulator projectq

The ProjectQ syntax

Our goal is to have an intuitive syntax in order to enable an easy learning curve. Therefore, ProjectQ features a lean syntax which is close to the mathematical notation used in physics.

For example, consider applying an x-rotation by an angle theta to a qubit. In ProjectQ, this looks as follows:

Rx(theta) | qubit

whereas the corresponding notation in physics would be

\(R_x(\theta) \; |\text{qubit}\rangle\)

Moreover, the |-operator separates the classical arguments (on the left) from the quantum arguments (on the right). Next, you will see a basic quantum program using this syntax. Further examples can be found in the docs (Examples in the panel on the left) and in the ProjectQ examples folder on GitHub [https://github.com/ProjectQ-Framework/ProjectQ].

Basic quantum program

To check out the ProjectQ syntax in action and to see whether the installation worked, try to run the following basic example

from projectq import MainEngine # import the main compiler engine
from projectq.ops import H, Measure # import the operations we want to perform (Hadamard and measurement)

eng = MainEngine() # create a default compiler (the back-end is a simulator)
qubit = eng.allocate_qubit() # allocate 1 qubit

H | qubit # apply a Hadamard gate
Measure | qubit # measure the qubit

eng.flush() # flush all gates (and execute measurements)
print("Measured {}".format(int(qubit))) # output measurement result

Which creates random bits (0 or 1).

Examples

All of these example codes and more can be found on GitHub [https://github.com/ProjectQ-Framework/ProjectQ/tree/master/examples/].

Quantum Random Numbers

The most basic example is a quantum random number generator (QRNG). It can be found in the examples-folder of ProjectQ. The code looks as follows

from projectq.ops import H, Measure
from projectq import MainEngine

create a main compiler engine
eng = MainEngine()

allocate one qubit
q1 = eng.allocate_qubit()

put it in superposition
H | q1

measure
Measure | q1

eng.flush()
print the result:
print("Measured: {}".format(int(q1)))

Running this code three times may yield, e.g.,

$ python examples/quantum_random_numbers.py
Measured: 0
$ python examples/quantum_random_numbers.py
Measured: 0
$ python examples/quantum_random_numbers.py
Measured: 1

These values are obtained by simulating this quantum algorithm classically. By changing three lines of code, we can run an actual quantum random number generator using the IBM Quantum Experience back-end:

$ python examples/quantum_random_numbers_ibm.py
Measured: 1
$ python examples/quantum_random_numbers_ibm.py
Measured: 0

All you need to do is:

	Create an account for IBM’s Quantum Experience [https://quantumexperience.ng.bluemix.net/]

	And perform these minor changes:

--- /home/docs/checkouts/readthedocs.org/user_builds/projectq/checkouts/fix-docs/examples/quantum_random_numbers.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/projectq/checkouts/fix-docs/examples/quantum_random_numbers_ibm.py
@@ -1,8 +1,10 @@
+import projectq.setups.ibm
 from projectq.ops import H, Measure
 from projectq import MainEngine
+from projectq.backends import IBMBackend

 # create a main compiler engine
-eng = MainEngine()
+eng = MainEngine(IBMBackend(), setup=projectq.setups.ibm)

 # allocate one qubit
 q1 = eng.allocate_qubit()

Quantum Teleportation

Alice has a qubit in some interesting state \(|\psi\rangle\), which she would like to show to Bob. This does not really make sense, since Bob would not be able to look at the qubit without collapsing the superposition; but let’s just assume Alice wants to send her state to Bob for some reason.
What she can do is use quantum teleportation to achieve this task. Yet, this only works if Alice and Bob share a Bell-pair (which luckily happens to be the case). A Bell-pair is a pair of qubits in the state

\[|A\rangle \otimes |B\rangle = \frac 1{\sqrt 2} \left(|0\rangle\otimes|0\rangle + |1\rangle\otimes|1\rangle \right)\]

They can create a Bell-pair using a very simple circuit which first applies a Hadamard gate to the first qubit, and then flips the second qubit conditional on the first qubit being in \(|1\rangle\). The circuit diagram can be generated by calling the function

def create_bell_pair(eng):
 b2 = eng.allocate_qubit()

 H | b1
 CNOT | (b1, b2)

 return b1, b2

with a main compiler engine which has a CircuitDrawer back-end, i.e.,

from projectq import MainEngine
from projectq.backends import CircuitDrawer

from teleport import create_bell_pair

create a main compiler engine
drawing_engine = CircuitDrawer()
eng = MainEngine(drawing_engine)

create_bell_pair(eng)

eng.flush()
print(drawing_engine.get_latex())

The resulting LaTeX code can be compiled to produce the circuit diagram:

$ python examples/bellpair_circuit.py > bellpair_circuit.tex
$ pdflatex bellpair_circuit.tex

The output looks as follows:

[image: _images/bellpair_circuit.png]
Now, this Bell-pair can be used to achieve the quantum teleportation: Alice entangles her qubit with her share of the Bell-pair. Then, she measures both qubits; one in the Z-basis (Measure) and one in the Hadamard basis (Hadamard, then Measure). She then sends her measurement results to Bob who, depending on these outcomes, applies a Pauli-X or -Z gate.

The complete example looks as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

	from projectq.ops import H, X, Z, Rz, CNOT, Measure
from projectq import MainEngine
from projectq.meta import Dagger, Control

def create_bell_pair(eng):
 b2 = eng.allocate_qubit()

 H | b1
 CNOT | (b1, b2)

 return b1, b2

def run_teleport(eng, state_creation_function, verbose=False):
 # make a Bell-pair
 b1, b2 = create_bell_pair(eng)

 # Alice creates a nice state to send
 psi = eng.allocate_qubit()
 if verbose:
 print("Alice is creating her state from scratch, i.e., |0>.")
 state_creation_function(eng, psi)

 # entangle it with Alice's b1
 CNOT | (psi, b1)
 if verbose:
 print("Alice entangled her qubit with her share of the Bell-pair.")

 # measure two values (once in Hadamard basis) and send the bits to Bob
 H | psi
 Measure | (psi, b1)
 msg_to_bob = [int(psi), int(b1)]
 if verbose:
 print("Alice is sending the message {} to Bob.".format(msg_to_bob))

 # Bob may have to apply up to two operation depending on the message sent
 # by Alice:
 with Control(eng, b1):
 X | b2
 with Control(eng, psi):
 Z | b2

 # try to uncompute the psi state
 if verbose:
 print("Bob is trying to uncompute the state.")
 with Dagger(eng):
 state_creation_function(eng, b2)

 # check whether the uncompute was successful. The simulator only allows to
 # delete qubits which are in a computational basis state.
 del b2
 eng.flush()

 if verbose:
 print("Bob successfully arrived at |0>")

if __name__ == "__main__":
 # create a main compiler engine with a simulator backend:
 eng = MainEngine()

 # define our state-creation routine, which transforms a |0> to the state
 # we would like to send. Bob can then try to uncompute it and, if he
 # arrives back at |0>, we know that the teleportation worked.
 def create_state(eng, qb):
 H | qb
 Rz(1.21) | qb

 # run the teleport and then, let Bob try to uncompute his qubit:
 run_teleport(eng, create_state, verbose=True)

and the corresponding circuit can be generated using

$ python examples/teleport_circuit.py > teleport_circuit.tex
$ pdflatex teleport_circuit.tex

which produces (after renaming of the qubits inside the tex-file):

[image: _images/teleport_circuit.png]

Shor’s algorithm for factoring

As a third example, consider Shor’s algorithm for factoring, which for a given (large) number \(N\) determines the two prime factor \(p_1\) and \(p_2\) such that
\(p_1\cdot p_2 = N\) in polynomial time! This is a superpolynomial speed-up over the best known classical algorithm (which is the number field sieve) and enables the breaking of modern encryption schemes such as RSA on a future quantum computer.

	A tiny bit of number theory

	There is a small amount of number theory involved, which reduces the problem of factoring to period-finding of the function

\[f(x) = a^x\operatorname{mod} N\]

for some a (relative prime to N, otherwise we get a factor right away anyway by calling gcd(a,N)). The period r for a function f(x) is the number for which \(f(x) = f(x+r)\forall x\) holds. In this case, this means that \(a^x = a^{x+r}\;\; (\operatorname{mod} N)\;\forall x\). Therefore, \(a^r = 1 + qN\) for some integer q and hence, \(a^r - 1 = (a^{r/2} - 1)(a^{r/2}+1) = qN\). This suggests that using the gcd on N and \(a^{r/2} \pm 1\) we may find a factor of N!

	Factoring on a quantum computer: An example

	At the heart of Shor’s algorithm lies modular exponentiation of a classically known constant (denoted by a in the code) by a quantum superposition of numbers \(x\), i.e.,

\[|x\rangle|0\rangle \mapsto |x\rangle|a^x\operatorname{mod} N\rangle\]

Using \(N=15\) and \(a=2\), and applying this operation to the uniform superposition over all \(x\) leads to the superposition (modulo renormalization)

\[|0\rangle|1\rangle + |1\rangle|2\rangle + |2\rangle|4\rangle + |3\rangle|8\rangle + |4\rangle|1\rangle + |5\rangle|2\rangle + |6\rangle|4\rangle + \cdots\]

In Shor’s algorithm, the second register will not be touched again before the end of the quantum program, which means it might as well be measured now. Let’s assume we measure 2; this collapses the state above to

\[|1\rangle|2\rangle + |5\rangle|2\rangle + |9\rangle|2\rangle + \cdots\]

The period of a modulo N can now be read off. On a quantum computer, this information can be accessed by applying an inverse quantum Fourier transform to the x-register, followed by a measurement of x.

	Implementation

	There is an implementation of Shor’s algorithm in the examples folder. It uses the implementation by Beauregard, arxiv:0205095 [https://arxiv.org/abs/quant-ph/0205095] to factor an n-bit number using 2n+3 qubits. In this implementation, the modular exponentiation is carried out using modular multiplication and shift. Furthermore it uses the semi-classical quantum Fourier transform [see arxiv:9511007 [https://arxiv.org/abs/quant-ph/9511007]]: Pulling the final measurement of the x-register through the final inverse quantum Fourier transform allows to run the 2n modular multiplications serially, which keeps one from having to store the 2n qubits of x.

Let’s run it using the ProjectQ simulator:

$ python3 examples/shor.py

projectq

Implementation of Shor's algorithm.
Number to factor: 15

Factoring N = 15: 00000001

Factors found :-) : 3 * 5 = 15

Simulating Shor’s algorithm at the level of single-qubit gates and CNOTs already takes quite a bit of time for larger numbers than 15. To turn on our emulation feature, which does not decompose the modular arithmetic to low-level gates, but carries it out directly instead, we can change the line

	 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106

	

Filter function, which defines the gate set for the first optimization
(don't decompose QFTs and iQFTs to make cancellation easier)
def high_level_gates(eng, cmd):
 g = cmd.gate
 if g == QFT or get_inverse(g) == QFT or g == Swap:
 return True
 if isinstance(g, BasicMathGate):
 return False
 if isinstance(g, AddConstant):
 return True
 elif isinstance(g, AddConstantModN):

in examples/shor.py to return True. This allows to factor, e.g. \(N=4,028,033\) in under 3 minutes on a regular laptop!

The most important part of the code is

	59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

	
 for k in range(2 * n):
 current_a = pow(a, 1 << (2 * n - 1 - k), N)
 # one iteration of 1-qubit QPE
 H | ctrl_qubit
 with Control(eng, ctrl_qubit):
 MultiplyByConstantModN(current_a, N) | x

 # perform inverse QFT --> Rotations conditioned on previous outcomes
 for i in range(k):
 if measurements[i]:
 R(-math.pi/(1 << (k - i))) | ctrl_qubit
 H | ctrl_qubit

 # and measure
 Measure | ctrl_qubit
 eng.flush()
 measurements[k] = int(ctrl_qubit)
 if measurements[k]:
 X | ctrl_qubit

which executes the 2n modular multiplications conditioned on a control qubit ctrl_qubit in a uniform superposition of 0 and 1. The control qubit is then measured after performing the semi-classical inverse quantum Fourier transform and the measurement outcome is saved in the list measurements, followed by a reset of the control qubit to state 0.

Code Documentation

Welcome to the package documentation of ProjectQ. You may now browse through the entire documentation and discover the capabilities of the ProjectQ framework.

For a detailed documentation of a subpackage or module, click on its name below:

	backends

	cengines

	libs

	meta

	ops

	setups

	types

backends

	projectq.backends.CommandPrinter([…])

	CommandPrinter is a compiler engine which prints commands to stdout prior to sending them on to the next compiler engine.

	projectq.backends.CircuitDrawer([…])

	CircuitDrawer is a compiler engine which generates TikZ code for drawing quantum circuits.

	projectq.backends.Simulator([gate_fusion, …])

	Simulator is a compiler engine which simulates a quantum computer using C++-based kernels.

	projectq.backends.ClassicalSimulator()

	A simple introspective simulator that only permits classical operations.

	projectq.backends.ResourceCounter()

	ResourceCounter is a compiler engine which counts the number of gates and max.

	projectq.backends.IBMBackend([use_hardware, …])

	The IBM Backend class, which stores the circuit, transforms it to JSON QASM, and sends the circuit through the IBM API.

Module contents

Contains back-ends for ProjectQ.

This includes:

	a debugging tool to print all received commands (CommandPrinter)

	a circuit drawing engine (which can be used anywhere within the compilation
chain)

	a simulator with emulation capabilities

	a resource counter (counts gates and keeps track of the maximal width of the
circuit)

	an interface to the IBM Quantum Experience chip (and simulator).

	
class projectq.backends.CircuitDrawer(accept_input=False, default_measure=0)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_circuits/_drawer.py#L53]

	CircuitDrawer is a compiler engine which generates TikZ code for drawing
quantum circuits.

The circuit can be modified by editing the settings.json file which is
generated upon first execution. This includes adjusting the gate width,
height, shadowing, line thickness, and many more options.

After initializing the CircuitDrawer, it can also be given the mapping
from qubit IDs to wire location (via the set_qubit_locations()
function):

circuit_backend = CircuitDrawer()
circuit_backend.set_qubit_locations({0: 1, 1: 0}) # swap lines 0 and 1
eng = MainEngine(circuit_backend)

... # run quantum algorithm on this main engine

print(circuit_backend.get_latex()) # prints LaTeX code

To see the qubit IDs in the generated circuit, simply set the draw_id
option in the settings.json file under “gates”:”AllocateQubitGate” to
True:

"gates": {
 "AllocateQubitGate": {
 "draw_id": True,
 "height": 0.15,
 "width": 0.2,
 "pre_offset": 0.1,
 "offset": 0.1
 },
 ...

The settings.json file has the following structure:

{
 "control": { # settings for control "circle"
 "shadow": false,
 "size": 0.1
 },
 "gate_shadow": true, # enable/disable shadows for all gates
 "gates": {
 "GateClassString": {
 GATE_PROPERTIES
 }
 "GateClassString2": {
 ...
 },
 "lines": { # settings for qubit lines
 "double_classical": true, # draw double-lines for
 # classical bits
 "double_lines_sep": 0.04, # gap between the two lines
 # for double lines
 "init_quantum": true, # start out with quantum bits
 "style": "very thin" # line style
 }
}

All gates (except for the ones requiring special treatment) support the
following properties:

"GateClassString": {
 "height": GATE_HEIGHT,
 "width": GATE_WIDTH
 "pre_offset": OFFSET_BEFORE_PLACEMENT,
 "offset": OFFSET_AFTER_PLACEMENT,
},

	
__init__(accept_input=False, default_measure=0)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_circuits/_drawer.py#L132]

	Initialize a circuit drawing engine.

The TikZ code generator uses a settings file (settings.json), which
can be altered by the user. It contains gate widths, heights, offsets,
etc.

	Parameters

	
	accept_input (bool) – If accept_input is true, the printer queries
the user to input measurement results if the CircuitDrawer is
the last engine. Otherwise, all measurements yield the result
default_measure (0 or 1).

	default_measure (bool) – Default value to use as measurement
results if accept_input is False and there is no underlying
backend to register real measurement results.

	
get_latex()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_circuits/_drawer.py#L247]

	Return the latex document string representing the circuit.

Simply write this string into a tex-file or, alternatively, pipe the
output directly to, e.g., pdflatex:

python3 my_circuit.py | pdflatex

where my_circuit.py calls this function and prints it to the terminal.

	
is_available(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_circuits/_drawer.py#L156]

	Specialized implementation of is_available: Returns True if the
CircuitDrawer is the last engine (since it can print any command).

	Parameters

	cmd (Command) – Command for which to check availability (all
Commands can be printed).

	Returns

	True, unless the next engine cannot handle
the Command (if there is a next engine).

	Return type

	availability (bool)

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_circuits/_drawer.py#L279]

	Receive a list of commands from the previous engine, print the
commands, and then send them on to the next engine.

	Parameters

	command_list (list<Command>) – List of Commands to print (and
potentially send on to the next engine).

	
set_qubit_locations(id_to_loc)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_circuits/_drawer.py#L173]

	Sets the qubit lines to use for the qubits explicitly.

To figure out the qubit IDs, simply use the setting draw_id in the
settings file. It is located in “gates”:”AllocateQubitGate”.
If draw_id is True, the qubit IDs are drawn in red.

	Parameters

	id_to_loc (dict) – Dictionary mapping qubit ids to qubit line
numbers.

	Raises

	RuntimeError – If the mapping has already begun (this function
needs be called before any gates have been received).

	
class projectq.backends.ClassicalSimulator[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_classical_simulator.py#L28]

	A simple introspective simulator that only permits classical operations.

Allows allocation, deallocation, measuring (no-op), flushing (no-op),
controls, NOTs, and any BasicMathGate. Supports reading/writing directly
from/to bits and registers of bits.

	
read_bit(qubit)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_classical_simulator.py#L41]

	Reads a bit.

	Parameters

	qubit (projectq.types.Qubit) – The bit to read.

	Returns

	0 if the target bit is off, 1 if it’s on.

	Return type

	int

	
read_register(qureg)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_classical_simulator.py#L85]

	Reads a group of bits as a little-endian integer.

	Parameters

	qureg (projectq.types.Qureg) – The group of bits to read, in little-endian order.

	Returns

	Little-endian register value.

	Return type

	int

	
write_bit(qubit, value)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_classical_simulator.py#L54]

	Resets/sets a bit to the given value.

	Parameters

	
	qubit (projectq.types.Qubit) – The bit to write.

	value (bool|int) – Writes 1 if this value is truthy, else 0.

	
write_register(qureg, value)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_classical_simulator.py#L101]

	Sets a group of bits to store a little-endian integer value.

	Parameters

	
	qureg (projectq.types.Qureg) – The bits to write, in little-endian order.

	value (int) – The integer value to store. Must fit in the register.

	
class projectq.backends.CommandPrinter(accept_input=True, default_measure=False, in_place=False)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_printer.py#L28]

	CommandPrinter is a compiler engine which prints commands to stdout prior
to sending them on to the next compiler engine.

	
__init__(accept_input=True, default_measure=False, in_place=False)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_printer.py#L33]

	Initialize a CommandPrinter.

	Parameters

	
	accept_input (bool) – If accept_input is true, the printer queries
the user to input measurement results if the CommandPrinter is
the last engine. Otherwise, all measurements yield
default_measure.

	default_measure (bool) – Default measurement result (if
accept_input is False).

	in_place (bool) – If in_place is true, all output is written on the
same line of the terminal.

	
is_available(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_printer.py#L53]

	Specialized implementation of is_available: Returns True if the
CommandPrinter is the last engine (since it can print any command).

	Parameters

	cmd (Command) – Command of which to check availability (all
Commands can be printed).

	Returns

	
	True, unless the next engine cannot handle

	the Command (if there is a next engine).

	Return type

	availability (bool)

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_printer.py#L101]

	Receive a list of commands from the previous engine, print the
commands, and then send them on to the next engine.

	Parameters

	command_list (list<Command>) – List of Commands to print (and
potentially send on to the next engine).

	
class projectq.backends.IBMBackend(use_hardware=False, num_runs=1024, verbose=False, user=None, password=None, device='ibmqx2')[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_ibm/_ibm.py#L42]

	The IBM Backend class, which stores the circuit, transforms it to JSON
QASM, and sends the circuit through the IBM API.

	
__init__(use_hardware=False, num_runs=1024, verbose=False, user=None, password=None, device='ibmqx2')[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_ibm/_ibm.py#L47]

	Initialize the Backend object.

	Parameters

	
	use_hardware (bool) – If True, the code is run on the IBM quantum
chip (instead of using the IBM simulator)

	num_runs (int) – Number of runs to collect statistics.
(default is 1024)

	verbose (bool) – If True, statistics are printed, in addition to
the measurement result being registered (at the end of the
circuit).

	user (string) – IBM Quantum Experience user name

	password (string) – IBM Quantum Experience password

	device (string) – Device to use (‘ibmqx2’, ‘ibmqx4’, or ‘ibmqx5’)
if use_hardware is set to True. Default is ibmqx2.

	
get_probabilities(qureg)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_ibm/_ibm.py#L174]

	Return the list of basis states with corresponding probabilities.

The measured bits are ordered according to the supplied quantum
register, i.e., the left-most bit in the state-string corresponds to
the first qubit in the supplied quantum register.

Warning

Only call this function after the circuit has been executed!

	Parameters

	qureg (list<Qubit>) – Quantum register determining the order of the
qubits.

	Returns

	Dictionary mapping n-bit strings to
probabilities.

	Return type

	probability_dict (dict)

	Raises

	RuntimeError – If no data is available (i.e., if the circuit has
not been executed). Or if a qubit was supplied which was not
present in the circuit (might have gotten optimized away).

	
is_available(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_ibm/_ibm.py#L80]

	Return true if the command can be executed.

The IBM quantum chip can do X, Y, Z, T, Tdag, S, Sdag,
rotation gates, barriers, and CX / CNOT.

	Parameters

	cmd (Command) – Command for which to check availability

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_ibm/_ibm.py#L271]

	Receives a command list and, for each command, stores it until
completion.

	Parameters

	command_list – List of commands to execute

	
class projectq.backends.ResourceCounter[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_resource.py#L24]

	ResourceCounter is a compiler engine which counts the number of gates and
max. number of active qubits.

	
gate_counts

	dict – Dictionary of gate counts.
The keys are tuples of the form (cmd.gate, ctrl_cnt), where
ctrl_cnt is the number of control qubits.

	
gate_class_counts

	dict – Dictionary of gate class counts.
The keys are tuples of the form (cmd.gate.__class__, ctrl_cnt),
where ctrl_cnt is the number of control qubits.

	
max_width

	int – Maximal width (=max. number of active qubits at any
given point).

	
__init__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_resource.py#L39]

	Initialize a resource counter engine.

Sets all statistics to zero.

	
is_available(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_resource.py#L51]

	Specialized implementation of is_available: Returns True if the
ResourceCounter is the last engine (since it can count any command).

	Parameters

	cmd (Command) – Command for which to check availability (all
Commands can be counted).

	Returns

	
	True, unless the next engine cannot handle

	the Command (if there is a next engine).

	Return type

	availability (bool)

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_resource.py#L128]

	Receive a list of commands from the previous engine, increases the
counters of the received commands, and then send them on to the next
engine.

	Parameters

	command_list (list<Command>) – List of commands to receive (and
count).

	
class projectq.backends.Simulator(gate_fusion=False, rnd_seed=None)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L41]

	Simulator is a compiler engine which simulates a quantum computer using
C++-based kernels.

OpenMP is enabled and the number of threads can be controlled using the
OMP_NUM_THREADS environment variable, i.e.

export OMP_NUM_THREADS=4 # use 4 threads
export OMP_PROC_BIND=spread # bind threads to processors by spreading

	
__init__(gate_fusion=False, rnd_seed=None)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L54]

	Construct the C++/Python-simulator object and initialize it with a
random seed.

	Parameters

	
	gate_fusion (bool) – If True, gates are cached and only executed
once a certain gate-size has been reached (only has an effect
for the c++ simulator).

	rnd_seed (int) – Random seed (uses random.randint(0, 1024) by
default).

Example of gate_fusion: Instead of applying a Hadamard gate to 5
qubits, the simulator calculates the kronecker product of the 1-qubit
gate matrices and then applies one 5-qubit gate. This increases
operational intensity and keeps the simulator from having to iterate
through the state vector multiple times. Depending on the system (and,
especially, number of threads), this may or may not be beneficial.

Note

If the C++ Simulator extension was not built or cannot be found,
the Simulator defaults to a Python implementation of the kernels.
While this is much slower, it is still good enough to run basic
quantum algorithms.

If you need to run large simulations, check out the tutorial in
the docs which gives futher hints on how to build the C++
extension.

	
apply_qubit_operator(qubit_operator, qureg)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L148]

	Apply a (possibly non-unitary) qubit_operator to the current wave
function represented by the supplied quantum register.

	Parameters

	
	qubit_operator (projectq.ops.QubitOperator) – Operator to apply.

	qureg (list[Qubit],Qureg) – Quantum bits to which to apply the
operator.

Warning

This function allows applying non-unitary gates and it will not
re-normalize the wave function! It is for numerical experiments
only and should not be used for other purposes.

Note

Make sure all previous commands (especially allocations) have
passed through the compilation chain (call main_engine.flush() to
make sure).

	Raises

	Exception – If qubit_operator acts on more qubits than present in
the qureg argument.

	
cheat()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L268]

	Access the ordering of the qubits and the state vector directly.

This is a cheat function which enables, e.g., more efficient
evaluation of expectation values and debugging.

	Returns

	A tuple where the first entry is a dictionary mapping qubit
indices to bit-locations and the second entry is the corresponding
state vector.

Note

Make sure all previous commands have passed through the
compilation chain (call main_engine.flush() to make sure).

	
collapse_wavefunction(qureg, values)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L247]

	Collapse a quantum register onto a classical basis state.

	Parameters

	
	qureg (Qureg|list[Qubit]) – Qubits to collapse.

	values (list[bool]) – Measurement outcome for each of the qubits
in qureg.

	Raises

	RuntimeError – If an outcome has probability (approximately) 0 or
if unknown qubits are provided (see note).

Note

Make sure all previous commands have passed through the
compilation chain (call main_engine.flush() to make sure).

	
get_amplitude(bit_string, qureg)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L203]

	Return the probability amplitude of the supplied bit_string.
The ordering is given by the quantum register qureg, which must
contain all allocated qubits.

	Parameters

	
	bit_string (list[bool|int]|string[0|1]) – Computational basis state

	qureg (Qureg|list[Qubit]) – Quantum register determining the
ordering. Must contain all allocated qubits.

	Returns

	Probability amplitude of the provided bit string.

Note

Make sure all previous commands (especially allocations) have
passed through the compilation chain (call main_engine.flush() to
make sure).

	
get_expectation_value(qubit_operator, qureg)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L117]

	Get the expectation value of qubit_operator w.r.t. the current wave
function represented by the supplied quantum register.

	Parameters

	
	qubit_operator (projectq.ops.QubitOperator) – Operator to measure.

	qureg (list[Qubit],Qureg) – Quantum bits to measure.

	Returns

	Expectation value

Note

Make sure all previous commands (especially allocations) have
passed through the compilation chain (call main_engine.flush() to
make sure).

	Raises

	Exception – If qubit_operator acts on more qubits than present in
the qureg argument.

	
get_probability(bit_string, qureg)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L182]

	Return the probability of the outcome bit_string when measuring
the quantum register qureg.

	Parameters

	
	bit_string (list[bool|int]|string[0|1]) – Measurement outcome.

	qureg (Qureg|list[Qubit]) – Quantum register.

	Returns

	Probability of measuring the provided bit string.

Note

Make sure all previous commands (especially allocations) have
passed through the compilation chain (call main_engine.flush() to
make sure).

	
is_available(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L89]

	Specialized implementation of is_available: The simulator can deal
with all arbitrarily-controlled gates which provide a
gate-matrix (via gate.matrix) and acts on 5 or less qubits (not
counting the control qubits).

	Parameters

	cmd (Command) – Command for which to check availability (single-
qubit gate, arbitrary controls)

	Returns

	True if it can be simulated and False otherwise.

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L350]

	Receive a list of commands from the previous engine and handle them
(simulate them classically) prior to sending them on to the next
engine.

	Parameters

	command_list (list<Command>) – List of commands to execute on the
simulator.

	
set_wavefunction(wavefunction, qureg)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/backends/_sim/_simulator.py#L226]

	Set the wavefunction and the qubit ordering of the simulator.

The simulator will adopt the ordering of qureg (instead of reordering
the wavefunction).

	Parameters

	
	wavefunction (list[complex]) – Array of complex amplitudes
describing the wavefunction (must be normalized).

	qureg (Qureg|list[Qubit]) – Quantum register determining the
ordering. Must contain all allocated qubits.

Note

Make sure all previous commands (especially allocations) have
passed through the compilation chain (call main_engine.flush() to
make sure).

cengines

The ProjectQ compiler engines package.

	projectq.cengines.BasicEngine()

	Basic compiler engine: All compiler engines are derived from this class.

	projectq.cengines.ForwarderEngine(engine[, …])

	A ForwarderEngine is a trivial engine which forwards all commands to the next engine.

	projectq.cengines.CommandModifier(cmd_mod_fun)

	CommandModifier is a compiler engine which applies a function to all incoming commands, sending on the resulting command instead of the original one.

	projectq.cengines.IBMCNOTMapper()

	CNOT mapper for the IBM backend.

	projectq.cengines.ManualMapper([map_fun])

	Manual Mapper which adds QubitPlacementTags to Allocate gate commands according to a user-specified mapping.

	projectq.cengines.MainEngine([backend, …])

	The MainEngine class provides all functionality of the main compiler engine.

	projectq.cengines.LocalOptimizer([m])

	LocalOptimizer is a compiler engine which optimizes locally (merging rotations, cancelling gates with their inverse) in a local window of user- defined size.

	projectq.cengines.AutoReplacer(…[, …])

	The AutoReplacer is a compiler engine which uses engine.is_available in order to determine which commands need to be replaced/decomposed/compiled further.

	projectq.cengines.InstructionFilter(filterfun)

	The InstructionFilter is a compiler engine which changes the behavior of is_available according to a filter function.

	projectq.cengines.DecompositionRuleSet([…])

	A collection of indexed decomposition rules.

	projectq.cengines.DecompositionRule(…[, …])

	A rule for breaking down specific gates into sequences of simpler gates.

	projectq.cengines.TagRemover([tags])

	TagRemover is a compiler engine which removes temporary command tags (see the tag classes such as LoopTag in projectq.meta._loop).

	projectq.cengines.CompareEngine()

	CompareEngine is an engine which saves all commands.

	projectq.cengines.DummyEngine([save_commands])

	DummyEngine used for testing.

Module contents

	
class projectq.cengines.AutoReplacer(decompositionRuleSet, decomposition_chooser=<function AutoReplacer.<lambda>>)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_replacer.py#L75]

	The AutoReplacer is a compiler engine which uses engine.is_available in
order to determine which commands need to be replaced/decomposed/compiled
further. The loaded setup is used to find decomposition rules appropriate
for each command (e.g., setups.default).

	
__init__(decompositionRuleSet, decomposition_chooser=<function AutoReplacer.<lambda>>)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_replacer.py#L82]

	Initialize an AutoReplacer.

	Parameters

	decomposition_chooser (function) – A function which, given the
Command to decompose and a list of potential Decomposition
objects, determines (and then returns) the ‘best’
decomposition.

The default decomposition chooser simply returns the first list
element, i.e., calling

repl = AutoReplacer()

Amounts to

def decomposition_chooser(cmd, decomp_list):
 return decomp_list[0]
repl = AutoReplacer(decomposition_chooser)

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_replacer.py#L203]

	Receive a list of commands from the previous compiler engine and, if
necessary, replace/decompose the gates according to the decomposition
rules in the loaded setup.

	Parameters

	command_list (list<Command>) – List of commands to handle.

	
class projectq.cengines.BasicEngine[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L38]

	Basic compiler engine: All compiler engines are derived from this class.
It provides basic functionality such as qubit allocation/deallocation and
functions that provide information about the engine’s position (e.g., next
engine).

This information is provided by the MainEngine, which initializes all
further engines.

	
next_engine

	BasicEngine – Next compiler engine (or the back-end).

	
main_engine

	MainEngine – Reference to the main compiler engine.

	
is_last_engine

	bool – True for the last engine, which is the back-end.

	
__init__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L53]

	Initialize the basic engine.

Initializes local variables such as _next_engine, _main_engine, etc. to
None.

	
allocate_qubit(dirty=False)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L85]

	Return a new qubit as a list containing 1 qubit object (quantum
register of size 1).

Allocates a new qubit by getting a (new) qubit id from the MainEngine,
creating the qubit object, and then sending an AllocateQubit command
down the pipeline. If dirty=True, the fresh qubit can be replaced by
a pre-allocated one (in an unknown, dirty, initial state). Dirty qubits
must be returned to their initial states before they are deallocated /
freed.

All allocated qubits are added to the MainEngine’s set of active
qubits as weak references. This allows proper clean-up at the end of
the Python program (using atexit), deallocating all qubits which are
still alive. Qubit ids of dirty qubits are registered in MainEngine’s
dirty_qubits set.

	Parameters

	dirty (bool) – If True, indicates that the allocated qubit may be
dirty (i.e., in an arbitrary initial state).

	Returns

	Qureg of length 1, where the first entry is the allocated qubit.

	
allocate_qureg(n)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L122]

	Allocate n qubits and return them as a quantum register, which is a
list of qubit objects.

	Parameters

	n (int) – Number of qubits to allocate

	Returns

	Qureg of length n, a list of n newly allocated qubits.

	
deallocate_qubit(qubit)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L134]

	Deallocate a qubit (and sends the deallocation command down the
pipeline). If the qubit was allocated as a dirty qubit, add
DirtyQubitTag() to Deallocate command.

	Parameters

	qubit (BasicQubit) – Qubit to deallocate.

	Raises

	ValueError – Qubit already deallocated. Caller likely has a bug.

	
is_available(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L64]

	Default implementation of is_available:
Ask the next engine whether a command is available, i.e.,
whether it can be executed by the next engine(s).

	Parameters

	cmd (Command) – Command for which to check availability.

	Returns

	True if the command can be executed.

	Raises

	LastEngineException – If is_last_engine is True but is_available
is not implemented.

	
is_meta_tag_supported(meta_tag)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L155]

	Check if there is a compiler engine handling the meta tag

	Parameters

	
	engine – First engine to check (then iteratively calls
getNextEngine)

	meta_tag – Meta tag class for which to check support

	Returns

	True if one of the further compiler engines is a
meta tag handler, i.e., engine.is_meta_tag_handler(meta_tag)
returns True.

	Return type

	supported (bool)

	
send(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L181]

	Forward the list of commands to the next engine in the pipeline.

	
class projectq.cengines.CommandModifier(cmd_mod_fun)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_cmdmodifier.py#L22]

	CommandModifier is a compiler engine which applies a function to all
incoming commands, sending on the resulting command instead of the
original one.

	
__init__(cmd_mod_fun)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_cmdmodifier.py#L28]

	Initialize the CommandModifier.

	Parameters

	cmd_mod_fun (function) – Function which, given a command cmd,
returns the command it should send instead.

Example

def cmd_mod_fun(cmd):
 cmd.tags += [MyOwnTag()]
compiler_engine = CommandModifier(cmd_mod_fun)
...

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_cmdmodifier.py#L47]

	Receive a list of commands from the previous engine, modify all
commands, and send them on to the next engine.

	Parameters

	command_list (list<Command>) – List of commands to receive and then
(after modification) send on.

	
class projectq.cengines.CompareEngine[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_testengine.py#L23]

	CompareEngine is an engine which saves all commands. It is only intended
for testing purposes. Two CompareEngine backends can be compared and
return True if they contain the same commmands.

	
class projectq.cengines.DecompositionRule(gate_class, gate_decomposer, gate_recognizer=<function DecompositionRule.<lambda>>)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_decomposition_rule.py#L22]

	A rule for breaking down specific gates into sequences of simpler gates.

	
__init__(gate_class, gate_decomposer, gate_recognizer=<function DecompositionRule.<lambda>>)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_decomposition_rule.py#L27]

	
	Parameters

	
	gate_class (type) – The type of gate that this rule decomposes.

The gate class is redundant information used to make lookups
faster when iterating over a circuit and deciding “which rules
apply to this gate?” again and again.

Note that this parameter is a gate type, not a gate instance.
You supply gate_class=MyGate or gate_class=MyGate().__class__,
not gate_class=MyGate().

	gate_decomposer (function[projectq.ops.Command]) – Function which,
given the command to decompose, applies a sequence of gates
corresponding to the high-level function of a gate of type
gate_class.

	(function[projectq.ops.Command] (gate_recognizer) – boolean): A
predicate that determines if the decomposition applies to the
given command (on top of the filtering by gate_class).

For example, a decomposition rule may only to apply rotation
gates that rotate by a specific angle.

If no gate_recognizer is given, the decomposition applies to
all gates matching the gate_class.

	
class projectq.cengines.DecompositionRuleSet(rules=None, modules=None)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_decomposition_rule_set.py#L18]

	A collection of indexed decomposition rules.

	
__init__(rules=None, modules=None)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_decomposition_rule_set.py#L22]

	
	Parameters

	
	list[DecompositionRule] (rules) – Initial decomposition rules.

	modules (iterable[ModuleWithDecompositionRuleSet]) – A list of
things with an “all_defined_decomposition_rules” property
containing decomposition rules to add to the rule set.

	
add_decomposition_rule(rule)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_decomposition_rule_set.py#L45]

	Add a decomposition rule to the rule set.

	Parameters

	rule (DecompositionRuleGate) – The decomposition rule to add.

	
class projectq.cengines.DummyEngine(save_commands=False)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_testengine.py#L91]

	DummyEngine used for testing.

The DummyEngine forwards all commands directly to next engine.
If self.is_last_engine == True it just discards all gates.
By setting save_commands == True all commands get saved as a
list in self.received_commands. Elements are appended to this
list so they are ordered according to when they are received.

	
__init__(save_commands=False)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_testengine.py#L101]

	Initialize DummyEngine

	Parameters

	save_commands (default = False) – If True, commands are saved in
self.received_commands.

	
class projectq.cengines.ForwarderEngine(engine, cmd_mod_fun=None)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L188]

	A ForwarderEngine is a trivial engine which forwards all commands to the
next engine.

It is mainly used as a substitute for the MainEngine at lower levels such
that meta operations still work (e.g., with Compute).

	
__init__(engine, cmd_mod_fun=None)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L196]

	Initialize a ForwarderEngine.

	Parameters

	
	engine (BasicEngine) – Engine to forward all commands to.

	cmd_mod_fun (function) – Function which is called before sending a
command. Each command cmd is replaced by the command it
returns when getting called with cmd.

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L215]

	Forward all commands to the next engine.

	
class projectq.cengines.IBMCNOTMapper[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_ibmcnotmapper.py#L35]

	CNOT mapper for the IBM backend.

Maps a given circuit to the IBM Quantum Experience chip.
If necessary, it will flip around the CNOT gate by first applying Hadamard
gates to both qubits, then CNOT with swapped control and target qubit, and
finally Hadamard gates to both qubits.
Furthermore, it adds QubitPlacementTags to Allocate gate commands.

Note

The mapper has to be run once on the entire circuit.

Warning

If the provided circuit cannot be mapped to the hardware layout
without performing Swaps, the mapping procedure
raises an Exception.

	
__init__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_ibmcnotmapper.py#L54]

	Initialize an IBM CNOT Mapper compiler engine.

Resets the mapping.

	
is_available(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_ibmcnotmapper.py#L63]

	Check if the IBM backend can perform the Command cmd and return True
if so.

	Parameters

	cmd (Command) – The command to check

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_ibmcnotmapper.py#L261]

	Receives a command list and, for each command, stores it until
completion.

	Parameters

	command_list (list of Command objects) – list of commands to
receive.

	Raises

	Exception – If mapping the CNOT gates to 1 qubit would require
Swaps. The current version only supports remapping of CNOT
gates without performing any Swaps due to the large costs
associated with Swapping given the CNOT constraints.

	
class projectq.cengines.InstructionFilter(filterfun)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_replacer.py#L35]

	The InstructionFilter is a compiler engine which changes the behavior of
is_available according to a filter function. All commands are passed to
this function, which then returns whether this command can be executed
(True) or needs replacement (False).

	
__init__(filterfun)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_replacer.py#L42]

	Initializer: The provided filterfun returns True for all commands
which do not need replacement and False for commands that do.

	Parameters

	filterfun (function) – Filter function which returns True for
available commands, and False otherwise. filterfun will be
called as filterfun(self, cmd).

	
is_available(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_replacer.py#L55]

	Specialized implementation of BasicBackend.is_available: Forwards this
call to the filter function given to the constructor.

	Parameters

	cmd (Command) – Command for which to check availability.

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_replacer/_replacer.py#L65]

	Forward all commands to the next engine.

	Parameters

	command_list (list<Command>) – List of commands to receive.

	
exception projectq.cengines.LastEngineException(engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_basics.py#L21]

	Exception thrown when the last engine tries to access the next one.
(Next engine does not exist)

The default implementation of isAvailable simply asks the next engine
whether the command is available. An engine which legally may be the last
engine, this behavior needs to be adapted (see BasicEngine.isAvailable).

	
class projectq.cengines.LocalOptimizer(m=5)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_optimize.py#L24]

	LocalOptimizer is a compiler engine which optimizes locally (merging
rotations, cancelling gates with their inverse) in a local window of user-
defined size.

It stores all commands in a list of lists, where each qubit has its own
gate pipeline. After adding a gate, it tries to merge / cancel successive
gates using the get_merged and get_inverse functions of the gate (if
available). For examples, see BasicRotationGate. Once a list corresponding
to a qubit contains >=m gates, the pipeline is sent on to the next engine.

	
__init__(m=5)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_optimize.py#L36]

	Initialize a LocalOptimizer object.

	Parameters

	m (int) – Number of gates to cache per qubit, before sending on the
first gate.

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_optimize.py#L227]

	Receive commands from the previous engine and cache them.
If a flush gate arrives, the entire buffer is sent on.

	
class projectq.cengines.MainEngine(backend=None, engine_list=None, setup=None, verbose=False)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_main.py#L39]

	The MainEngine class provides all functionality of the main compiler
engine.

It initializes all further compiler engines (calls, e.g.,
.next_engine=…) and keeps track of measurement results and active
qubits (and their IDs).

	
next_engine

	BasicEngine – Next compiler engine (or the back-end).

	
main_engine

	MainEngine – Self.

	
active_qubits

	WeakSet – WeakSet containing all active qubits

	
dirty_qubits

	Set – Containing all dirty qubit ids

	
backend

	BasicEngine – Access the back-end.

	
__init__(backend=None, engine_list=None, setup=None, verbose=False)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_main.py#L56]

	Initialize the main compiler engine and all compiler engines.

Sets ‘next_engine’- and ‘main_engine’-attributes of all compiler
engines and adds the back-end as the last engine.

	Parameters

	
	backend (BasicEngine) – Backend to send the circuit to.

	engine_list (list<BasicEngine>) – List of engines / backends to use
as compiler engines.

	setup (module) – Setup module which defines a function called
get_engine_list(). get_engine_list() returns the list
of engines to be used as compiler engines.
The default setup is projectq.setups.default (if no engine
list and no setup is provided).

	verbose (bool) – Either print full or compact error messages.
Default: False (i.e. compact error messages).

Example

from projectq import MainEngine
eng = MainEngine() # uses default setup and the Simulator

Instead of the default setup one can use, e.g., one of the IBM setups
which defines a custom engine_list useful for one of the IBM chips

Example

import projectq.setups.ibm
from projectq import MainEngine
eng = MainEngine(setup=projectq.setups.ibm)
eng uses the default Simulator backend

Alternatively, one can specify all compiler engines explicitly, e.g.,

Example

from projectq.cengines import (TagRemover, AutoReplacer,
 LocalOptimizer,
 DecompositionRuleSet)
from projectq.backends import Simulator
from projectq import MainEngine
rule_set = DecompositionRuleSet()
engines = [AutoReplacer(rule_set), TagRemover(),
 LocalOptimizer(3)]
eng = MainEngine(Simulator(), engines)

	
flush(deallocate_qubits=False)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_main.py#L292]

	Flush the entire circuit down the pipeline, clearing potential buffers
(of, e.g., optimizers).

	Parameters

	deallocate_qubits (bool) – If True, deallocates all qubits that are
still alive (invalidating references to them by setting their
id to -1).

	
get_measurement_result(qubit)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_main.py#L218]

	Return the classical value of a measured qubit, given that an engine
registered this result previously (see setMeasurementResult).

	Parameters

	qubit (BasicQubit) – Qubit of which to get the measurement result.

Example

from projectq.ops import H, Measure
from projectq import MainEngine
eng = MainEngine()
qubit = eng.allocate_qubit() # quantum register of size 1
H | qubit
Measure | qubit
eng.get_measurement_result(qubit[0]) == int(qubit)

	
get_new_qubit_id()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_main.py#L250]

	Returns a unique qubit id to be used for the next qubit allocation.

	Returns

	New unique qubit id.

	Return type

	new_qubit_id (int)

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_main.py#L260]

	Forward the list of commands to the first engine.

	Parameters

	command_list (list<Command>) – List of commands to receive (and
then send on)

	
send(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_main.py#L270]

	Forward the list of commands to the next engine in the pipeline.

It also shortens exception stack traces if self.verbose is False.

	
set_measurement_result(qubit, value)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_main.py#L201]

	Register a measurement result

The engine being responsible for measurement results needs to register
these results with the master engine such that they are available when
the user calls an int() or bool() conversion operator on a measured
qubit.

	Parameters

	
	qubit (BasicQubit) – Qubit for which to register the measurement
result.

	value (bool) – Boolean value of the measurement outcome
(True / False = 1 / 0 respectively).

	
class projectq.cengines.ManualMapper(map_fun=<function ManualMapper.<lambda>>)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_manualmapper.py#L23]

	Manual Mapper which adds QubitPlacementTags to Allocate gate commands
according to a user-specified mapping.

	
map

	function – The function which maps a given qubit id to its
location. It gets set when initializing the mapper.

	
__init__(map_fun=<function ManualMapper.<lambda>>)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_manualmapper.py#L33]

	Initialize the mapper to a given mapping. If no mapping function is
provided, the qubit id is used as the location.

	Parameters

	map_fun (function) – Function which, given the qubit id, returns
an integer describing the physical location.

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_manualmapper.py#L45]

	Receives a command list and passes it to the next engine, adding
qubit placement tags to allocate gates.

	Parameters

	command_list (list of Command objects) – list of commands to
receive.

	
class projectq.cengines.TagRemover(tags=[<class 'projectq.meta._compute.ComputeTag'>, <class 'projectq.meta._compute.UncomputeTag'>])[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_tagremover.py#L24]

	TagRemover is a compiler engine which removes temporary command tags (see
the tag classes such as LoopTag in projectq.meta._loop).

Removing tags is important (after having handled them if necessary) in
order to enable optimizations across meta-function boundaries (compute/
action/uncompute or loops after unrolling)

	
__init__(tags=[<class 'projectq.meta._compute.ComputeTag'>, <class 'projectq.meta._compute.UncomputeTag'>])[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_tagremover.py#L33]

	Construct the TagRemover.

	Parameters

	tags – A list of meta tag classes (e.g., [ComputeTag, UncomputeTag])
denoting the tags to remove

	
receive(command_list)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/cengines/_tagremover.py#L45]

	Receive a list of commands from the previous engine, remove all tags
which are an instance of at least one of the meta tags provided in the
constructor, and then send them on to the next compiler engine.

	Parameters

	command_list (list<Command>) – List of commands to receive and then
(after removing tags) send on.

libs

The library collection of ProjectQ which, for now, only consists of a tiny math library. Soon, more libraries will be added.

Subpackages

	math
	Module contents

Module contents

math

A tiny math library which will be extended thoughout the next weeks. Right now, it only contains the math functions necessary to run Beauregard’s implementation of Shor’s algorithm.

	projectq.libs.math.all_defined_decomposition_rules

	list() -> new empty list

	projectq.libs.math.AddConstant(a)

	Add a constant to a quantum number represented by a quantum register, stored from low- to high-bit.

	projectq.libs.math.SubConstant(a)

	Subtract a constant from a quantum number represented by a quantum register, stored from low- to high-bit.

	projectq.libs.math.AddConstantModN(a, N)

	Add a constant to a quantum number represented by a quantum register modulo N.

	projectq.libs.math.SubConstantModN(a, N)

	Subtract a constant from a quantum number represented by a quantum register modulo N.

	projectq.libs.math.MultiplyByConstantModN(a, N)

	Multiply a quantum number represented by a quantum register by a constant modulo N.

Module contents

	
class projectq.libs.math.AddConstant(a)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L18]

	Add a constant to a quantum number represented by a quantum register,
stored from low- to high-bit.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[1] # qunum is now equal to 2
AddConstant(3) | qunum # qunum is now equal to 5

	
__init__(a)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L30]

	Initializes the gate to the number to add.

	Parameters

	a (int) – Number to add to a quantum register.

It also initializes its base class, BasicMathGate, with the
corresponding function, so it can be emulated efficiently.

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L43]

	Return the inverse gate (subtraction of the same constant).

	
class projectq.libs.math.AddConstantModN(a, N)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L77]

	Add a constant to a quantum number represented by a quantum register
modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[1] # qunum is now equal to 2
AddConstantModN(3, 4) | qunum # qunum is now equal to 1

	
__init__(a, N)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L91]

	Initializes the gate to the number to add modulo N.

	Parameters

	
	a (int) – Number to add to a quantum register (0 <= a < N).

	N (int) – Number modulo which the addition is carried out.

It also initializes its base class, BasicMathGate, with the
corresponding function, so it can be emulated efficiently.

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L109]

	Return the inverse gate (subtraction of the same number a modulo the
same number N).

	
class projectq.libs.math.MultiplyByConstantModN(a, N)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L146]

	Multiply a quantum number represented by a quantum register by a constant
modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[2] # qunum is now equal to 4
MultiplyByConstantModN(3,5) | qunum # qunum is now 2.

	
__init__(a, N)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L160]

	Initializes the gate to the number to multiply with modulo N.

	Parameters

	
	a (int) – Number by which to multiply a quantum register
(0 <= a < N).

	N (int) – Number modulo which the multiplication is carried out.

It also initializes its base class, BasicMathGate, with the
corresponding function, so it can be emulated efficiently.

	
projectq.libs.math.SubConstant(a)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L59]

	Subtract a constant from a quantum number represented by a quantum
register, stored from low- to high-bit.

	Parameters

	a (int) – Constant to subtract

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[2] # qunum is now equal to 4
SubConstant(3) | qunum # qunum is now equal to 1

	
projectq.libs.math.SubConstantModN(a, N)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/libs/math/_gates.py#L124]

	Subtract a constant from a quantum number represented by a quantum
register modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

	Parameters

	
	a (int) – Constant to add

	N (int) – Constant modulo which the addition of a should be carried
out.

Example

qunum = eng.allocate_qureg(3) # 3-qubit number
X | qunum[1] # qunum is now equal to 2
SubConstantModN(4,5) | qunum # qunum is now -2 = 6 = 1 (mod 5)

meta

Contains meta statements which allow more optimal code while making it easier for users to write their code.
Examples are with Compute, followed by an automatic uncompute or with Control, which allows the user to condition an entire code block upon the state of a qubit.

	projectq.meta.DirtyQubitTag

	Dirty qubit meta tag

	projectq.meta.QubitPlacementTag(position)

	Qubit placement meta tag

	projectq.meta.LoopTag(num)

	Loop meta tag

	projectq.meta.Loop(engine, num)

	Loop n times over an entire code block.

	projectq.meta.Compute(engine)

	Start a compute-section.

	projectq.meta.Uncompute(engine)

	Uncompute automatically.

	projectq.meta.CustomUncompute(engine)

	Start a custom uncompute-section.

	projectq.meta.ComputeTag

	Compute meta tag.

	projectq.meta.UncomputeTag

	Uncompute meta tag.

	projectq.meta.Control(engine, qubits)

	Condition an entire code block on the value of qubits being 1.

	projectq.meta.get_control_count(cmd)

	Return the number of control qubits of the command object cmd

	projectq.meta.Dagger(engine)

	Invert an entire code block.

	projectq.meta.insert_engine(prev_engine, …)

	Inserts an engine into the singly-linked list of engines.

	projectq.meta.drop_engine_after(prev_engine)

	Removes an engine from the singly-linked list of engines.

Module contents

The projectq.meta package features meta instructions which help both the user
and the compiler in writing/producing efficient code. It includes, e.g.,

	Loop (with Loop(eng): …)

	Compute/Uncompute (with Compute(eng): …, […], Uncompute(eng))

	Control (with Control(eng, ctrl_qubits): …)

	Dagger (with Dagger(eng): …)

	
class projectq.meta.Compute(engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_compute.py#L280]

	Start a compute-section.

Example

with Compute(eng):
 do_something(qubits)
action(qubits)
Uncompute(eng) # runs inverse of the compute section

Warning

If qubits are allocated within the compute section, they must either be
uncomputed and deallocated within that section or, alternatively,
uncomputed and deallocated in the following uncompute section.

This means that the following examples are valid:

with Compute(eng):
 anc = eng.allocate_qubit()
 do_something_with_ancilla(anc)
 ...
 uncompute_ancilla(anc)
 del anc

do_something_else(qubits)

Uncompute(eng) # will allocate a new ancilla (with a different id)
 # and then deallocate it again

with Compute(eng):
 anc = eng.allocate_qubit()
 do_something_with_ancilla(anc)
 ...

do_something_else(qubits)

Uncompute(eng) # will deallocate the ancilla!

After the uncompute section, ancilla qubits allocated within the
compute section will be invalid (and deallocated). The same holds when
using CustomUncompute.

Failure to comply with these rules results in an exception being
thrown.

	
__init__(engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_compute.py#L332]

	Initialize a Compute context.

	Parameters

	engine (BasicEngine) – Engine which is the first to receive all
commands (normally: MainEngine).

	
class projectq.meta.ComputeTag[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_compute.py#L43]

	Compute meta tag.

	
class projectq.meta.Control(engine, qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_control.py#L72]

	Condition an entire code block on the value of qubits being 1.

Example

with Control(eng, ctrlqubits):
 do_something(otherqubits)

	
__init__(engine, qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_control.py#L83]

	Enter a controlled section.

	Parameters

	
	engine – Engine which handles the commands (usually MainEngine)

	qubits (list of Qubit objects) – Qubits to condition on

Enter the section using a with-statement:

with Control(eng, ctrlqubits):
 ...

	
class projectq.meta.CustomUncompute(engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_compute.py#L353]

	Start a custom uncompute-section.

Example

with Compute(eng):
 do_something(qubits)
action(qubits)
with CustomUncompute(eng):
 do_something_inverse(qubits)

	Raises

	QubitManagementError – If qubits are allocated within Compute or within
CustomUncompute context but are not deallocated.

	
__init__(engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_compute.py#L371]

	Initialize a CustomUncompute context.

	Parameters

	engine (BasicEngine) – Engine which is the first to receive all
commands (normally: MainEngine).

	
class projectq.meta.Dagger(engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_dagger.py#L80]

	Invert an entire code block.

Use it with a with-statement, i.e.,

with Dagger(eng):
 [code to invert]

Warning

If the code to invert contains allocation of qubits, those qubits have
to be deleted prior to exiting the ‘with Dagger()’ context.

This code is NOT VALID:

with Dagger(eng):
 qb = eng.allocate_qubit()
 H | qb # qb is still available!!!

The correct way of handling qubit (de-)allocation is as follows:

with Dagger(eng):
 qb = eng.allocate_qubit()
 ...
 del qb # sends deallocate gate (which becomes an allocate)

	
__init__(engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_dagger.py#L113]

	Enter an inverted section.

	Parameters

	engine – Engine which handles the commands (usually MainEngine)

Example (executes an inverse QFT):

with Dagger(eng):
 QFT | qubits

	
class projectq.meta.DirtyQubitTag[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_dirtyqubit.py#L20]

	Dirty qubit meta tag

	
class projectq.meta.Loop(engine, num)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_loop.py#L190]

	Loop n times over an entire code block.

Example

with Loop(eng, 4):
 # [quantum gates to be executed 4 times]

Warning

If the code in the loop contains allocation of qubits, those qubits
have to be deleted prior to exiting the ‘with Loop()’ context.

This code is NOT VALID:

with Loop(eng, 4):
 qb = eng.allocate_qubit()
 H | qb # qb is still available!!!

The correct way of handling qubit (de-)allocation is as follows:

with Loop(eng, 4):
 qb = eng.allocate_qubit()
 ...
 del qb # sends deallocate gate

	
__init__(engine, num)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_loop.py#L222]

	Enter a looped section.

	Parameters

	
	engine – Engine handling the commands (usually MainEngine)

	num (int) – Number of loop iterations

Example

with Loop(eng, 4):
 H | qb
 Rz(M_PI/3.) | qb

	Raises

	
	TypeError – If number of iterations (num) is not an integer

	ValueError – If number of iterations (num) is not >= 0

	
class projectq.meta.LoopTag(num)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_loop.py#L37]

	Loop meta tag

	
__init__(num)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_loop.py#L41]

	

	
loop_tag_id = 0[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_loop.py#L37]

	

	
class projectq.meta.QubitPlacementTag(position)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_qubitplacement.py#L20]

	Qubit placement meta tag

	
__init__(position)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_qubitplacement.py#L24]

	

	
projectq.meta.Uncompute(engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_compute.py#L422]

	Uncompute automatically.

Example

with Compute(eng):
 do_something(qubits)
action(qubits)
Uncompute(eng) # runs inverse of the compute section

	
class projectq.meta.UncomputeTag[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_compute.py#L55]

	Uncompute meta tag.

	
projectq.meta.drop_engine_after(prev_engine)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_util.py#L33]

	Removes an engine from the singly-linked list of engines.

	Parameters

	prev_engine (projectq.cengines.BasicEngine) – The engine just before the engine to drop.

	Returns

	The dropped engine.

	Return type

	Engine

	
projectq.meta.get_control_count(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_control.py#L115]

	Return the number of control qubits of the command object cmd

	
projectq.meta.insert_engine(prev_engine, engine_to_insert)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/meta/_util.py#L16]

	Inserts an engine into the singly-linked list of engines.

It also sets the correct main_engine for engine_to_insert.

	Parameters

	
	prev_engine (projectq.cengines.BasicEngine) – The engine just before the insertion point.

	engine_to_insert (projectq.cengines.BasicEngine) – The engine to insert at the insertion point.

ops

The operations collection consists of various default gates and is a work-in-progress, as users start to work with ProjectQ.

	projectq.ops.BasicGate()

	Base class of all gates.

	projectq.ops.SelfInverseGate()

	Self-inverse basic gate class.

	projectq.ops.BasicRotationGate(angle)

	Defines a base class of a rotation gate.

	projectq.ops.BasicPhaseGate(angle)

	Defines a base class of a phase gate.

	projectq.ops.ClassicalInstructionGate()

	Classical instruction gate.

	projectq.ops.FastForwardingGate()

	Base class for classical instruction gates which require a fast-forward through compiler engines that cache / buffer gates.

	projectq.ops.BasicMathGate(math_fun)

	Base class for all math gates.

	projectq.ops.apply_command(cmd)

	Apply a command.

	projectq.ops.Command(engine, gate, qubits[, …])

	Class used as a container to store commands.

	projectq.ops.H

	Shortcut (instance of) projectq.ops.HGate

	projectq.ops.X

	Shortcut (instance of) projectq.ops.XGate

	projectq.ops.Y

	Shortcut (instance of) projectq.ops.YGate

	projectq.ops.Z

	Shortcut (instance of) projectq.ops.ZGate

	projectq.ops.S

	Shortcut (instance of) projectq.ops.SGate

	projectq.ops.Sdag

	Wrapper class allowing to execute the inverse of a gate, even when it does not define one.

	projectq.ops.T

	Shortcut (instance of) projectq.ops.TGate

	projectq.ops.Tdag

	Wrapper class allowing to execute the inverse of a gate, even when it does not define one.

	projectq.ops.SqrtX

	Shortcut (instance of) projectq.ops.SqrtXGate

	projectq.ops.Swap

	Shortcut (instance of) projectq.ops.SwapGate

	projectq.ops.SqrtSwap

	Shortcut (instance of) projectq.ops.SqrtSwapGate

	projectq.ops.Entangle

	Shortcut (instance of) projectq.ops.EntangleGate

	projectq.ops.Ph(angle)

	Phase gate (global phase)

	projectq.ops.Rx(angle)

	RotationX gate class

	projectq.ops.Ry(angle)

	RotationX gate class

	projectq.ops.Rz(angle)

	RotationZ gate class

	projectq.ops.R(angle)

	Phase-shift gate (equivalent to Rz up to a global phase)

	projectq.ops.FlushGate()

	Flush gate (denotes the end of the circuit).

	projectq.ops.MeasureGate()

	Measurement gate class

	projectq.ops.Allocate

	Shortcut (instance of) projectq.ops.AllocateQubitGate

	projectq.ops.Deallocate

	Shortcut (instance of) projectq.ops.DeallocateQubitGate

	projectq.ops.AllocateDirty

	Shortcut (instance of) projectq.ops.AllocateDirtyQubitGate

	projectq.ops.Barrier

	Shortcut (instance of) projectq.ops.BarrierGate

	projectq.ops.DaggeredGate(gate)

	Wrapper class allowing to execute the inverse of a gate, even when it does not define one.

	projectq.ops.ControlledGate(gate[, n])

	Controlled version of a gate.

	projectq.ops.C(gate[, n])

	Return n-controlled version of the provided gate.

	projectq.ops.All

	Shortcut (instance of) projectq.ops.Tensor

	projectq.ops.Tensor(gate)

	Wrapper class allowing to apply a (single-qubit) gate to every qubit in a quantum register.

	projectq.ops.QFT

	Shortcut (instance of) projectq.ops.QFTGate

	projectq.ops.QubitOperator([term, coefficient])

	A sum of terms acting on qubits, e.g., 0.5 * ‘X0 X5’ + 0.3 * ‘Z1 Z2’.

	projectq.ops.CRz(angle)

	Shortcut for C(Rz(angle), n=1).

	projectq.ops.CNOT

	Controlled version of a gate.

	projectq.ops.Toffoli

	Controlled version of a gate.

	projectq.ops.TimeEvolution(time, hamiltonian)

	Gate for time evolution under a Hamiltonian (QubitOperator object).

Module contents

	
projectq.ops.All[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L250]

	alias of Tensor

	
class projectq.ops.AllocateDirtyQubitGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L296]

	Dirty qubit allocation gate class

	
class projectq.ops.AllocateQubitGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L272]

	Qubit allocation gate class

	
class projectq.ops.BarrierGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L308]

	Barrier gate class

	
class projectq.ops.BasicGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L61]

	Base class of all gates.

	
__init__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L65]

	Initialize a basic gate.

Note

Set interchangeable qubit indices!
(gate.interchangeable_qubit_indices)

As an example, consider

ExampleGate | (a,b,c,d,e)

where a and b are interchangeable. Then, call this function as
follows:

self.set_interchangeable_qubit_indices([[0,1]])

As another example, consider

ExampleGate2 | (a,b,c,d,e)

where a and b are interchangeable and, in addition, c, d, and e
are interchangeable among themselves. Then, call this function as

self.set_interchangeable_qubit_indices([[0,1],[2,3,4]])

	
__or__(qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L184]

	Operator| overload which enables the syntax Gate | qubits.

Example

	Gate | qubit

	Gate | [qubit0, qubit1]

	Gate | qureg

	Gate | (qubit,)

	Gate | (qureg, qubit)

	Parameters

	qubits – a Qubit object, a list of Qubit objects, a Qureg object,
or a tuple of Qubit or Qureg objects (can be mixed).

	
generate_command(qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L166]

	Helper function to generate a command consisting of the gate and
the qubits being acted upon.

	Parameters

	qubits – see BasicGate.make_tuple_of_qureg(qubits)

	Returns

	A Command object containing the gate and the qubits.

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L101]

	Return the inverse gate.

Standard implementation of get_inverse:

	Raises

	NotInvertible – inverse is not implemented

	
get_merged(other)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L112]

	Return this gate merged with another gate.

Standard implementation of get_merged:

	Raises

	NotMergeable – merging is not implemented

	
static make_tuple_of_qureg(qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L123]

	Convert quantum input of “gate | quantum input” to internal formatting.

A Command object only accepts tuples of Quregs (list of Qubit objects)
as qubits input parameter. However, with this function we allow the
user to use a more flexible syntax:

	Gate | qubit

	Gate | [qubit0, qubit1]

	Gate | qureg

	Gate | (qubit,)

	Gate | (qureg, qubit)

where qubit is a Qubit object and qureg is a Qureg object. This
function takes the right hand side of | and transforms it to the
correct input parameter of a Command object which is:

	-> Gate | ([qubit],)

	-> Gate | ([qubit0, qubit1],)

	-> Gate | (qureg,)

	-> Gate | ([qubit],)

	-> Gate | (qureg, [qubit])

	Parameters

	qubits – a Qubit object, a list of Qubit objects, a Qureg object,
or a tuple of Qubit or Qureg objects (can be mixed).

	Returns

	A tuple containing Qureg
(or list of Qubits) objects.

	Return type

	Canonical representation (tuple<qureg>)

	
class projectq.ops.BasicMathGate(math_fun)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L453]

	Base class for all math gates.

It allows efficient emulation by providing a mathematical representation
which is given by the concrete gate which derives from this base class.
The AddConstant gate, for example, registers a function of the form

def add(x):
 return (x+a,)

upon initialization. More generally, the function takes integers as
parameters and returns a tuple / list of outputs, each entry corresponding
to the function input. As an example, consider out-of-place
multiplication, which takes two input registers and adds the result into a
third, i.e., (a,b,c) -> (a,b,c+a*b). The corresponding function then is

def multiply(a,b,c)
 return (a,b,c+a*b)

	
__init__(math_fun)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L477]

	Initialize a BasicMathGate by providing the mathematical function that
it implements.

	Parameters

	math_fun (function) – Function which takes as many int values as
input, as the gate takes registers. For each of these values,
it then returns the output (i.e., it returns a list/tuple of
output values).

Example

def add(a,b):
 return (a,a+b)
BasicMathGate.__init__(self, add)

If the gate acts on, e.g., fixed point numbers, the number of bits per
register is also required in order to describe the action of such a
mathematical gate. For this reason, there is

BasicMathGate.get_math_function(qubits)

which can be overwritten by the gate deriving from BasicMathGate.

Example

def get_math_function(self, qubits):
 n = len(qubits[0])
 scal = 2.**n
 def math_fun(a):
 return (int(scal * (math.sin(math.pi * a / scal))),)
 return math_fun

	
get_math_function(qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L525]

	Return the math function which corresponds to the action of this math
gate, given the input to the gate (a tuple of quantum registers).

	Parameters

	qubits (tuple<Qureg>) – Qubits to which the math gate is being
applied.

	Returns

	Python function describing the action of this
gate. (See BasicMathGate.__init__ for an example).

	Return type

	math_fun (function)

	
class projectq.ops.BasicPhaseGate(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L325]

	Defines a base class of a phase gate.

A phase gate has a continuous parameter (the angle), labeled ‘angle’ /
self.angle. Its inverse is the same gate with the negated argument.
Phase gates of the same class can be merged by adding the angles.
The continuous parameter is modulo 2 * pi, self.angle is in the interval
[0, 2 * pi).

	
__init__(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L335]

	Initialize a basic rotation gate.

	Parameters

	angle (float) – Angle of rotation (saved modulo 2 * pi)

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L372]

	Return the inverse of this rotation gate (negate the angle, return new
object).

	
get_merged(other)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L382]

	Return self merged with another gate.

Default implementation handles rotation gate of the same type, where
angles are simply added.

	Parameters

	other – Rotation gate of same type.

	Raises

	NotMergeable – For non-rotation gates or rotation gates of
different type.

	Returns

	New object representing the merged gates.

	
tex_str()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L360]

	Return the Latex string representation of a BasicPhaseGate.

Returns the class name and the angle as a subscript, i.e.

[CLASSNAME]$_[ANGLE]$

	
class projectq.ops.BasicRotationGate(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L233]

	Defines a base class of a rotation gate.

A rotation gate has a continuous parameter (the angle), labeled ‘angle’ /
self.angle. Its inverse is the same gate with the negated argument.
Rotation gates of the same class can be merged by adding the angles.
The continuous parameter is modulo 4 * pi, self.angle is in the interval
[0, 4 * pi).

	
__init__(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L243]

	Initialize a basic rotation gate.

	Parameters

	angle (float) – Angle of rotation (saved modulo 4 * pi)

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L280]

	Return the inverse of this rotation gate (negate the angle, return new
object).

	
get_merged(other)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L290]

	Return self merged with another gate.

Default implementation handles rotation gate of the same type, where
angles are simply added.

	Parameters

	other – Rotation gate of same type.

	Raises

	NotMergeable – For non-rotation gates or rotation gates of
different type.

	Returns

	New object representing the merged gates.

	
tex_str()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L268]

	Return the Latex string representation of a BasicRotationGate.

Returns the class name and the angle as a subscript, i.e.

[CLASSNAME]$_[ANGLE]$

	
projectq.ops.C(gate, n=1)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L234]

	Return n-controlled version of the provided gate.

	Parameters

	
	gate – Gate to turn into its controlled version

	n – Number of controls (default: 1)

Example

C(NOT) | (c, q) # equivalent to CNOT | (c, q)

	
projectq.ops.CRz(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_shortcuts.py#L26]

	Shortcut for C(Rz(angle), n=1).

	
class projectq.ops.ClassicalInstructionGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L418]

	Classical instruction gate.

Base class for all gates which are not quantum gates in the typical sense,
e.g., measurement, allocation/deallocation, …

	
class projectq.ops.Command(engine, gate, qubits, controls=(), tags=())[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	Class used as a container to store commands. If a gate is applied to
qubits, then the gate and qubits are saved in a command object. Qubits
are copied into WeakQubitRefs in order to allow early deallocation (would
be kept alive otherwise). WeakQubitRef qubits don’t send deallocate gate
when destructed.

	
gate

	The gate to execute

	
qubits[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	Tuple of qubit lists (e.g. Quregs). Interchangeable qubits
are stored in a unique order

	
control_qubits[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	The Qureg of control qubits in a unique order

	
engine[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	The engine (usually: MainEngine)

	
tags

	The list of tag objects associated with this command
(e.g., ComputeTag, UncomputeTag, LoopTag, …). tag objects need to
support ==, != (__eq__ and __ne__) for comparison as used in e.g.
TagRemover. New tags should always be added to the end of the list.
This means that if there are e.g. two LoopTags in a command, tag[0]
is from the inner scope while tag[1] is from the other scope as the
other scope receives the command after the inner scope LoopEngine
and hence adds its LoopTag to the end.

	
all_qubits[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	A tuple of control_qubits + qubits

	
__init__(engine, gate, qubits, controls=(), tags=())[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L86]

	Initialize a Command object.

Note

control qubits (Command.control_qubits) are stored as a
list of qubits, and command tags (Command.tags) as a list of tag-
objects. All functions within this class also work if
WeakQubitRefs are supplied instead of normal Qubit objects
(see WeakQubitRef).

	Parameters

	
	engine (projectq.cengines.BasicEngine) – engine which created the qubit (mostly the MainEngine)

	gate (projectq.ops.Gate) – Gate to be executed

	qubits (tuple[Qureg]) – Tuple of quantum registers (to which the gate is applied)

	controls (Qureg|list[Qubit]) – Qubits that condition the command.

	tags (list[object]) – Tags associated with the command.

	
add_control_qubits(qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L226]

	Add (additional) control qubits to this command object.

They are sorted to ensure a canonical order. Also Qubit objects
are converted to WeakQubitRef objects to allow garbage collection and
thus early deallocation of qubits.

	Parameters

	qubits (list of Qubit objects) – List of qubits which control this
gate, i.e., the gate is only executed if all qubits are
in state 1.

	
all_qubits[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	Get all qubits (gate and control qubits).

Returns a tuple T where T[0] is a quantum register (a list of
WeakQubitRef objects) containing the control qubits and T[1:] contains
the quantum registers to which the gate is applied.

	
control_qubits[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	Returns Qureg of control qubits.

	
engine[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	Return engine to which the qubits belong / on which the gates are
executed.

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L135]

	Get the command object corresponding to the inverse of this command.

Inverts the gate (if possible) and creates a new command object from
the result.

	Raises

	NotInvertible – If the gate does not provide an inverse (see
BasicGate.get_inverse)

	
get_merged(other)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L152]

	Merge this command with another one and return the merged command
object.

	Parameters

	other – Other command to merge with this one (self)

	Raises

	NotMergeable – if the gates don’t supply a get_merged()-function
or can’t be merged for other reasons.

	
interchangeable_qubit_indices[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L61]

	Return nested list of qubit indices which are interchangeable.

Certain qubits can be interchanged (e.g., the qubit order for a Swap
gate). To ensure that only those are sorted when determining the
ordering (see _order_qubits), self.interchangeable_qubit_indices is
used.
.. rubric:: Example

If we can interchange qubits 0,1 and qubits 3,4,5,
then this function returns [[0,1],[3,4,5]]

	
class projectq.ops.ControlledGate(gate, n=1)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L136]

	Controlled version of a gate.

Note

Use the meta function C() to create a controlled gate

A wrapper class which enables (multi-) controlled gates. It overloads
the __or__-operator, using the first qubits provided as control qubits.
The n control-qubits need to be the first n qubits. They can be in
separate quregs.

Example

ControlledGate(gate, 2) | (qb0, qb2, qb3) # qb0 & qb2 are controls
C(gate, 2) | (qb0, qb2, qb3) # This is much nicer.
C(gate, 2) | ([qb0,qb2], qb3) # Is equivalent

Note

Use C() rather than ControlledGate, i.e.,

C(X, 2) == Toffoli

	
__init__(gate, n=1)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L163]

	Initialize a ControlledGate object.

	Parameters

	
	gate – Gate to wrap.

	n (int) – Number of control qubits.

	
__or__(qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L190]

	Apply the controlled gate to qubits, using the first n qubits as
controls.

	Note: The control qubits can be split across the first quregs.

	However, the n-th control qubit needs to be the last qubit in a
qureg. The following quregs belong to the gate.

	Parameters

	qubits (tuple of lists of Qubit objects) – qubits to which to apply
the gate.

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L183]

	Return inverse of a controlled gate, which is the controlled inverse
gate.

	
class projectq.ops.DaggeredGate(gate)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L42]

	Wrapper class allowing to execute the inverse of a gate, even when it does
not define one.

If there is a replacement available, then there is also one for the
inverse, namely the replacement function run in reverse, while inverting
all gates. This class enables using this emulation automatically.

A DaggeredGate is returned automatically when employing the get_inverse-
function on a gate which does not provide a get_inverse() member function.

Example

with Dagger(eng):
 MySpecialGate | qubits

will create a DaggeredGate if MySpecialGate does not implement
get_inverse. If there is a decomposition function available, an auto-
replacer engine can automatically replace the inverted gate by a call to
the decomposition function inside a “with Dagger”-statement.

	
__init__(gate)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L66]

	Initialize a DaggeredGate representing the inverse of the gate ‘gate’.

	Parameters

	gate – Any gate object of which to represent the inverse.

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L97]

	Return the inverse gate (the inverse of the inverse of a gate is the
gate itself).

	
tex_str()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L88]

	Return the Latex string representation of a Daggered gate.

	
class projectq.ops.DeallocateQubitGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L284]

	Qubit deallocation gate class

	
class projectq.ops.EntangleGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L185]

	Entangle gate (Hadamard on first qubit, followed by CNOTs applied to all
other qubits).

	
class projectq.ops.FastForwardingGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L428]

	Base class for classical instruction gates which require a fast-forward
through compiler engines that cache / buffer gates. Examples include
Measure and Deallocate, which both should be executed asap, such
that Measurement results are available and resources are freed,
respectively.

Note

The only requirement is that FlushGate commands run the entire
circuit. FastForwardingGate objects can be used but the user cannot
expect a measurement result to be available for all back-ends when
calling only Measure. E.g., for the IBM Quantum Experience back-end,
sending the circuit for each Measure-gate would be too inefficient,
which is why a final

is required before the circuit gets sent through the API.

	
class projectq.ops.FlushGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L240]

	Flush gate (denotes the end of the circuit).

Note

All compiler engines (cengines) which cache/buffer gates are obligated
to flush and send all gates to the next compiler engine (followed by
the flush command).

Note

This gate is sent when calling

eng.flush()

on the MainEngine eng.

	
class projectq.ops.HGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L46]

	Hadamard gate class

	
class projectq.ops.MeasureGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L263]

	Measurement gate class

	
exception projectq.ops.NotInvertible[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L53]

	Exception thrown when trying to invert a gate which is not invertable (or
where the inverse is not implemented (yet)).

	
exception projectq.ops.NotMergeable[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L45]

	Exception thrown when trying to merge two gates which are not mergeable (or
where it is not implemented (yet)).

	
class projectq.ops.Ph(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L197]

	Phase gate (global phase)

	
class projectq.ops.QFTGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_qftgate.py#L18]

	Quantum Fourier Transform gate.

	
class projectq.ops.QubitOperator(term=None, coefficient=1.0)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_qubit_operator.py#L48]

	A sum of terms acting on qubits, e.g., 0.5 * ‘X0 X5’ + 0.3 * ‘Z1 Z2’.

A term is an operator acting on n qubits and can be represented as:

coefficent * local_operator[0] x … x local_operator[n-1]

where x is the tensor product. A local operator is a Pauli operator
(‘I’, ‘X’, ‘Y’, or ‘Z’) which acts on one qubit. In math notation a term
is, for example, 0.5 * ‘X0 X5’, which means that a Pauli X operator acts
on qubit 0 and 5, while the identity operator acts on all other qubits.

A QubitOperator represents a sum of terms acting on qubits and overloads
operations for easy manipulation of these objects by the user.

Note for a QubitOperator to be a Hamiltonian which is a hermitian
operator, the coefficients of all terms must be real.

hamiltonian = 0.5 * QubitOperator('X0 X5') + 0.3 * QubitOperator('Z0')

	
terms

	dict – key: A term represented by a tuple containing all
non-trivial local Pauli operators (‘X’, ‘Y’, or ‘Z’).
A non-trivial local Pauli operator is specified by a
tuple with the first element being an integer
indicating the qubit on which a non-trivial local
operator acts and the second element being a string,
either ‘X’, ‘Y’, or ‘Z’, indicating which non-trivial
Pauli operator acts on that qubit. Examples:
((1, ‘X’),) or ((1, ‘X’), (4,’Z’)) or the identity ().
The tuples representing the non-trivial local terms
are sorted according to the qubit number they act on,
starting from 0.
value: Coefficient of this term as a (complex) float

	
__init__(term=None, coefficient=1.0)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_qubit_operator.py#L87]

	Inits a QubitOperator.

The init function only allows to initialize one term. Additional terms
have to be added using += (which is fast) or using + of two
QubitOperator objects:

Example

ham = ((QubitOperator('X0 Y3', 0.5)
 + 0.6 * QubitOperator('X0 Y3')))
Equivalently
ham2 = QubitOperator('X0 Y3', 0.5)
ham2 += 0.6 * QubitOperator('X0 Y3')

Note

Adding terms to QubitOperator is faster using += (as this is done
by in-place addition). Specifying the coefficient in the __init__
is faster than by multiplying a QubitOperator with a scalar as
calls an out-of-place multiplication.

	Parameters

	
	coefficient (complex float, optional) – The coefficient of the
first term of this QubitOperator. Default is 1.0.

	term (optional, empy tuple, a tuple of tuples, or a string) –
	Default is None which means there are no terms in the
QubitOperator hence it is the “zero” Operator

	An empty tuple means there are no non-trivial Pauli
operators acting on the qubits hence only identities
with a coefficient (which by default is 1.0).

	A sorted tuple of tuples. The first element of each tuple
is an integer indicating the qubit on which a non-trivial
local operator acts, starting from zero. The second element
of each tuple is a string, either ‘X’, ‘Y’ or ‘Z’,
indicating which local operator acts on that qubit.

	A string of the form ‘X0 Z2 Y5’, indicating an X on
qubit 0, Z on qubit 2, and Y on qubit 5. The string should
be sorted by the qubit number. ‘’ is the identity.

	Raises

	QubitOperatorError – Invalid operators provided to QubitOperator.

	
compress(abs_tol=1e-12)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_qubit_operator.py#L181]

	Eliminates all terms with coefficients close to zero and removes
imaginary parts of coefficients that are close to zero.

	Parameters

	abs_tol (float) – Absolute tolerance, must be at least 0.0

	
isclose(other, rel_tol=1e-12, abs_tol=1e-12)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_qubit_operator.py#L198]

	Returns True if other (QubitOperator) is close to self.

Comparison is done for each term individually. Return True
if the difference between each term in self and other is
less than the relative tolerance w.r.t. either other or self
(symmetric test) or if the difference is less than the absolute
tolerance.

	Parameters

	
	other (QubitOperator) – QubitOperator to compare against.

	rel_tol (float) – Relative tolerance, must be greater than 0.0

	abs_tol (float) – Absolute tolerance, must be at least 0.0

	
class projectq.ops.R(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L233]

	Phase-shift gate (equivalent to Rz up to a global phase)

	
class projectq.ops.Rx(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L205]

	RotationX gate class

	
class projectq.ops.Ry(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L215]

	RotationX gate class

	
class projectq.ops.Rz(angle)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L225]

	RotationZ gate class

	
class projectq.ops.SGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L98]

	S gate class

	
class projectq.ops.SelfInverseGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_basics.py#L216]

	Self-inverse basic gate class.

Automatic implementation of the get_inverse-member function for self-
inverse gates.

Example

get_inverse(H) == H, it is a self-inverse gate:
get_inverse(H) | qubit

	
class projectq.ops.SqrtSwapGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L165]

	Square-root Swap gate class

	
class projectq.ops.SqrtXGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L128]

	Square-root X gate class

	
class projectq.ops.SwapGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L144]

	Swap gate class (swaps 2 qubits)

	
class projectq.ops.TGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L113]

	T gate class

	
class projectq.ops.Tensor(gate)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L250]

	Wrapper class allowing to apply a (single-qubit) gate to every qubit in a
quantum register. Allowed syntax is to supply either a qureg or a tuple
which contains only one qureg.

Example

Tensor(H) | x # applies H to every qubit in the list of qubits x
Tensor(H) | (x,) # alternative to be consistent with other syntax

	
__init__(gate)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L263]

	Initialize a Tensor object for the gate.

	
__or__(qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L285]

	Applies the gate to every qubit in the quantum register qubits.

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L272]

	Return the inverse of this tensored gate (which is the tensored
inverse of the gate).

	
class projectq.ops.TimeEvolution(time, hamiltonian)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_time_evolution.py#L28]

	Gate for time evolution under a Hamiltonian (QubitOperator object).

This gate is the unitary time evolution propagator:
exp(-i * H * t),
where H is the Hamiltonian of the system and t is the time. Note that -i
factor is stored implicitely.

Example

wavefunction = eng.allocate_qureg(5)
hamiltonian = 0.5 * QubitOperator("X0 Z1 Y5")
Apply exp(-i * H * t) to the wavefunction:
TimeEvolution(time=2.0, hamiltonian=hamiltonian) | wavefunction

	
time

	float, int – time t

	
hamiltonian

	QubitOperator – hamiltonaian H

	
__init__(time, hamiltonian)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_time_evolution.py#L50]

	Initialize time evolution gate.

Note

The hamiltonian must be hermitian and therefore only terms with
real coefficients are allowed.
Coefficients are internally converted to float.

	Parameters

	
	time (float, or int) – time to evolve under (can be negative).

	hamiltonian (QubitOperator) – hamiltonian to evolve under.

	Raises

	
	TypeError – If time is not a numeric type and hamiltonian is not a
QubitOperator.

	NotHermitianOperatorError – If the input hamiltonian is not
hermitian (only real coefficients).

	
__or__(qubits)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_time_evolution.py#L142]

	Operator| overload which enables the following syntax:

TimeEvolution(...) | qureg
TimeEvolution(...) | (qureg,)
TimeEvolution(...) | qubit
TimeEvolution(...) | (qubit,)

Unlike other gates, this gate is only allowed to be applied to one
quantum register or one qubit.

Example:

wavefunction = eng.allocate_qureg(5)
hamiltonian = QubitOperator("X1 Y3", 0.5)
TimeEvolution(time=2.0, hamiltonian=hamiltonian) | wavefunction

While in the above example the TimeEvolution gate is applied to 5
qubits, the hamiltonian of this TimeEvolution gate acts only
non-trivially on the two qubits wavefunction[1] and wavefunction[3].
Therefore, the operator| will rescale the indices in the hamiltonian
and sends the equivalent of the following new gate to the MainEngine:

h = QubitOperator("X0 Y1", 0.5)
TimeEvolution(2.0, h) | [wavefunction[1], wavefunction[3]]

which is only a two qubit gate.

	Parameters

	qubits – one Qubit object, one list of Qubit objects, one Qureg
object, or a tuple of the former three cases.

	
get_inverse()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_time_evolution.py#L85]

	Return the inverse gate.

	
get_merged(other)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_time_evolution.py#L91]

	Return self merged with another TimeEvolution gate if possible.

	Two TimeEvolution gates are merged if:

	
	both have the same terms

	the proportionality factor for each of the terms
must have relative error <= 1e-9 compared to the
proportionality factors of the other terms.

Note

While one could merge gates for which both hamiltonians commute,
we are not doing this as in general the resulting gate would have
to be decomposed again.

Note

We are not comparing if terms are proportional to each other with
an absolute tolerance. It is up to the user to remove terms close
to zero because we cannot choose a suitable absolute error which
works for everyone. Use, e.g., a decomposition rule for that.

	Parameters

	other – TimeEvolution gate

	Raises

	NotMergeable – If the other gate is not a TimeEvolution gate or
hamiltonians are not suitable for merging.

	Returns

	New TimeEvolution gate equivalent to the two merged gates.

	
class projectq.ops.XGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L59]

	Pauli-X gate class

	
class projectq.ops.YGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L72]

	Pauli-Y gate class

	
class projectq.ops.ZGate[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_gates.py#L85]

	Pauli-Z gate class

	
projectq.ops.apply_command(cmd)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_command.py#L47]

	Apply a command.

Extracts the qubits-owning (target) engine from the Command object
and sends the Command to it.

	Parameters

	cmd (Command) – Command to apply

	
projectq.ops.get_inverse(gate)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/ops/_metagates.py#L115]

	Return the inverse of a gate.

Tries to call gate.get_inverse and, upon failure, creates a DaggeredGate
instead.

	Parameters

	gate – Gate of which to get the inverse

Example

get_inverse(H) # returns a Hadamard gate (HGate object)

setups

The setups package contains a collection of setups which can be loaded by the MainEngine. Each setup then loads its own set of decomposition rules and default compiler engines.

	Example:

	import projectq.setups.ibm
from projectq import MainEngine
eng = MainEngine(setup=projectq.setups.ibm)
eng uses the default Simulator backend

	Note:

	One can either provide an engine_list or a setup to the MainEngine but not both.

The subpackage decompositions contains all the individual decomposition rules
which can be given to, e.g., an AutoReplacer.

Subpackages

	decompositions

Submodules

Each of the submodules contains a setup which can be loaded by the MainEngine :

	projectq.setups.default

	Defines the default setup which provides an engine_list for the MainEngine

	projectq.setups.ibm

	Defines a setup useful for the IBM QE chip with 5 qubits.

	projectq.setups.ibm16

	Defines a setup useful for the IBM QE chip with 16 qubits.

default

Defines the default setup which provides an engine_list for the MainEngine

It contains LocalOptimizers and an AutoReplacer which uses most of the
decompositions rules defined in projectq.setups.decompositions

	
projectq.setups.default.get_engine_list()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/default.py#L30]

	

ibm

Defines a setup useful for the IBM QE chip with 5 qubits.

It provides the engine_list for the MainEngine, and contains an
AutoReplacer with most of the gate decompositions of ProjectQ, among others
it includes:

	Controlled z-rotations –> Controlled NOTs and single-qubit rotations

	Toffoli gate –> CNOT and single-qubit gates

	m-Controlled global phases –> (m-1)-controlled phase-shifts

	Global phases –> ignore

	(controlled) Swap gates –> CNOTs and Toffolis

	Arbitrary single qubit gates –> Rz and Ry

	Controlled arbitrary single qubit gates –> Rz, Ry, and CNOT gates

Moreover, it contains LocalOptimizers and a custom mapper for the CNOT
gates.

	
projectq.setups.ibm.get_engine_list()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/ibm.py#L44]

	

ibm16

Defines a setup useful for the IBM QE chip with 16 qubits.

It provides the engine_list for the MainEngine, and contains an
AutoReplacer with most of the gate decompositions of ProjectQ, among others
it includes:

	Controlled z-rotations –> Controlled NOTs and single-qubit rotations

	Toffoli gate –> CNOT and single-qubit gates

	m-Controlled global phases –> (m-1)-controlled phase-shifts

	Global phases –> ignore

	(controlled) Swap gates –> CNOTs and Toffolis

	Arbitrary single qubit gates –> Rz and Ry

	Controlled arbitrary single qubit gates –> Rz, Ry, and CNOT gates

Moreover, it contains LocalOptimizers.

Note

This setup does not yet contain an automatic mapper. The mapping
needs to be done manually using the ManualMapper.

	
projectq.setups.ibm16.get_engine_list()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/ibm16.py#L47]

	

Module contents

decompositions

The decomposition package is a collection of gate decomposition / replacement rules which can be used by, e.g., the AutoReplacer engine.

	projectq.setups.decompositions.arb1qubit2rzandry

	Registers the Z-Y decomposition for an arbitrary one qubit gate.

	projectq.setups.decompositions.barrier

	Registers a decomposition rule for barriers.

	projectq.setups.decompositions.carb1qubit2cnotrzandry

	Registers the decomposition of an controlled arbitary single qubit gate.

	projectq.setups.decompositions.cnu2toffoliandcu

	Registers a decomposition rule for multi-controlled gates.

	projectq.setups.decompositions.crz2cxandrz

	Registers a decomposition for controlled z-rotation gates.

	projectq.setups.decompositions.entangle

	Registers a decomposition for the Entangle gate.

	projectq.setups.decompositions.globalphase

	Registers a decomposition rule for global phases.

	projectq.setups.decompositions.ph2r

	Registers a decomposition for the controlled global phase gate.

	projectq.setups.decompositions.qft2crandhadamard

	Registers a decomposition rule for the quantum Fourier transform.

	projectq.setups.decompositions.r2rzandph

	Registers a decomposition rule for the phase-shift gate.

	projectq.setups.decompositions.rx2rz

	Registers a decomposition for the Rx gate into an Rz gate and Hadamard.

	projectq.setups.decompositions.ry2rz

	Registers a decomposition for the Ry gate into an Rz and Rx(pi/2) gate.

	projectq.setups.decompositions.swap2cnot

	Registers a decomposition to achieve a Swap gate.

	projectq.setups.decompositions.time_evolution

	Registers decomposition for the TimeEvolution gates.

	projectq.setups.decompositions.toffoli2cnotandtgate

	Registers a decomposition rule for the Toffoli gate.

Submodules

projectq.setups.decompositions.arb1qubit2rzandry module

Registers the Z-Y decomposition for an arbitrary one qubit gate.

See paper “Elementary gates for quantum computing” by Adriano Barenco et al.,
arXiv:quant-ph/9503016v1. (Note: They use different gate definitions!)
Or see theorem 4.1 in Nielsen and Chuang.

Decompose an arbitrary one qubit gate U into
U = e^(i alpha) Rz(beta) Ry(gamma) Rz(delta). If a gate V is element of SU(2),
i.e., determinant == 1, then
V = Rz(beta) Ry(gamma) Rz(delta)

	
projectq.setups.decompositions.arb1qubit2rzandry.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/arb1qubit2rzandry.py#L0]

	Decomposition rules

projectq.setups.decompositions.barrier module

Registers a decomposition rule for barriers.

Deletes all barriers if they are not supported.

	
projectq.setups.decompositions.barrier.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/barrier.py#L0]

	Decomposition rules

projectq.setups.decompositions.carb1qubit2cnotrzandry module

Registers the decomposition of an controlled arbitary single qubit gate.

See paper “Elementary gates for quantum computing” by Adriano Barenco et al.,
arXiv:quant-ph/9503016v1. (Note: They use different gate definitions!) or
Nielsen and Chuang chapter 4.3.

	
projectq.setups.decompositions.carb1qubit2cnotrzandry.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/carb1qubit2cnotrzandry.py#L0]

	Decomposition rules

projectq.setups.decompositions.cnu2toffoliandcu module

Registers a decomposition rule for multi-controlled gates.

Implements the decomposition of Nielsen and Chuang (Fig. 4.10) which
decomposes a C^n(U) gate into a sequence of 2 * (n-1) Toffoli gates and one
C(U) gate by using (n-1) ancilla qubits and circuit depth of 2n-1.

	
projectq.setups.decompositions.cnu2toffoliandcu.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/cnu2toffoliandcu.py#L0]

	Decomposition rules

projectq.setups.decompositions.crz2cxandrz module

Registers a decomposition for controlled z-rotation gates.

It uses 2 z-rotations and 2 C^n NOT gates to achieve this gate.

	
projectq.setups.decompositions.crz2cxandrz.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/crz2cxandrz.py#L0]

	Decomposition rules

projectq.setups.decompositions.entangle module

Registers a decomposition for the Entangle gate.

Applies a Hadamard gate to the first qubit and then, conditioned on this first
qubit, CNOT gates to all others.

	
projectq.setups.decompositions.entangle.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/entangle.py#L0]

	Decomposition rules

projectq.setups.decompositions.globalphase module

Registers a decomposition rule for global phases.

Deletes global phase gates (which can be ignored).

	
projectq.setups.decompositions.globalphase.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/globalphase.py#L0]

	Decomposition rules

projectq.setups.decompositions.ph2r module

Registers a decomposition for the controlled global phase gate.

Turns the controlled global phase gate into a (controlled) phase-shift gate.
Each time this rule is applied, one control can be shaved off.

	
projectq.setups.decompositions.ph2r.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/ph2r.py#L0]

	Decomposition rules

projectq.setups.decompositions.qft2crandhadamard module

Registers a decomposition rule for the quantum Fourier transform.

Decomposes the QFT gate into Hadamard and controlled phase-shift gates (R).

Warning

The final Swaps are not included, as those are simply a re-indexing of
quantum registers.

	
projectq.setups.decompositions.qft2crandhadamard.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/qft2crandhadamard.py#L0]

	Decomposition rules

projectq.setups.decompositions.r2rzandph module

Registers a decomposition rule for the phase-shift gate.

Decomposes the (controlled) phase-shift gate using z-rotation and a global
phase gate.

	
projectq.setups.decompositions.r2rzandph.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/r2rzandph.py#L0]

	Decomposition rules

projectq.setups.decompositions.rx2rz module

Registers a decomposition for the Rx gate into an Rz gate and Hadamard.

	
projectq.setups.decompositions.rx2rz.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/rx2rz.py#L0]

	Decomposition rules

projectq.setups.decompositions.ry2rz module

Registers a decomposition for the Ry gate into an Rz and Rx(pi/2) gate.

	
projectq.setups.decompositions.ry2rz.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/ry2rz.py#L0]

	Decomposition rules

projectq.setups.decompositions.swap2cnot module

Registers a decomposition to achieve a Swap gate.

Decomposes a Swap gate using 3 CNOT gates, where the one in the middle
features as many control qubits as the Swap gate has control qubits.

	
projectq.setups.decompositions.swap2cnot.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/swap2cnot.py#L0]

	Decomposition rules

projectq.setups.decompositions.time_evolution module

Registers decomposition for the TimeEvolution gates.

An exact straight forward decomposition of a TimeEvolution gate is possible
if the hamiltonian has only one term or if all the terms commute with each
other in which case one can implement each term individually.

	
projectq.setups.decompositions.time_evolution.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>, <projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/time_evolution.py#L0]

	Decomposition rules

projectq.setups.decompositions.toffoli2cnotandtgate module

Registers a decomposition rule for the Toffoli gate.

Decomposes the Toffoli gate using Hadamard, T, Tdag, and CNOT gates.

	
projectq.setups.decompositions.toffoli2cnotandtgate.all_defined_decomposition_rules = [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>][source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/setups/decompositions/toffoli2cnotandtgate.py#L0]

	Decomposition rules

Module contents

types

The types package contains quantum types such as Qubit, Qureg, and WeakQubitRef. With further development of the math library, also quantum integers, quantum fixed point numbers etc. will be added.

	projectq.types.BasicQubit(engine, idx)

	BasicQubit objects represent qubits.

	projectq.types.Qubit(engine, idx)

	Qubit class.

	projectq.types.Qureg

	Quantum register class.

	projectq.types.WeakQubitRef(engine, idx)

	WeakQubitRef objects are used inside the Command object.

Module contents

	
class projectq.types.BasicQubit(engine, idx)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L38]

	BasicQubit objects represent qubits.

They have an id and a reference to the owning engine.

	
__bool__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L61]

	Access the result of a previous measurement and return False / True
(0 / 1)

	
__eq__(other)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L81]

	Compare with other qubit (Returns True if equal id and engine).

	Parameters

	other (BasicQubit) – BasicQubit to which to compare this one

	
__hash__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L97]

	Return the hash of this qubit.

Hash definition because of custom __eq__.
Enables storing a qubit in, e.g., a set.

	
__init__(engine, idx)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L44]

	Initialize a BasicQubit object.

	Parameters

	
	engine – Owning engine / engine that created the qubit

	idx – Unique index of the qubit referenced by this qubit

	
__int__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L74]

	Access the result of a previous measurement and return as integer
(0 / 1).

	
__nonzero__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L68]

	Access the result of a previous measurement for Python 2.7.

	
__str__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L55]

	Return string representation of this qubit.

	
__weakref__[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L38]

	list of weak references to the object (if defined)

	
class projectq.types.Qubit(engine, idx)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L109]

	Qubit class.

Represents a (logical-level) qubit with a unique index provided by the
MainEngine. Once the qubit goes out of scope (and is garbage-collected),
it deallocates itself automatically, allowing automatic resource
management.

Thus the qubit is not copyable; only returns a reference to the same
object.

	
__copy__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L137]

	Non-copyable (returns reference to self).

Note

To prevent problems with automatic deallocation, qubits are not
copyable!

	
__deepcopy__(memo)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L147]

	Non-deepcopyable (returns reference to self).

Note

To prevent problems with automatic deallocation, qubits are not
deepcopyable!

	
__del__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L121]

	Destroy the qubit and deallocate it (automatically).

	
class projectq.types.Qureg[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L171]

	Quantum register class.

Simplifies accessing measured values for single-qubit registers (no []-
access necessary) and enables pretty-printing of general quantum registers
(call Qureg.__str__(qureg)).

	
__bool__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L179]

	Return measured value if Qureg consists of 1 qubit only.

	Raises

	
	Exception if more than 1 qubit resides in this register (then you

	need to specify which value to get using qureg[???])

	
__int__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L193]

	Return measured value if Qureg consists of 1 qubit only.

	Raises

	
	Exception if more than 1 qubit resides in this register (then you

	need to specify which value to get using qureg[???])

	
__nonzero__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L207]

	Return measured value if Qureg consists of 1 qubit only for Python 2.7.

	Raises

	
	Exception if more than 1 qubit resides in this register (then you

	need to specify which value to get using qureg[???])

	
__str__()[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L217]

	Get string representation of a quantum register.

	
__weakref__[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L171]

	list of weak references to the object (if defined)

	
engine[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L171]

	Return owning engine.

	
class projectq.types.WeakQubitRef(engine, idx)[source] [https://github.com/ProjectQ-Framework/ProjectQ/tree/fix/docs/projectq/types/_qubit.py#L158]

	WeakQubitRef objects are used inside the Command object.

Qubits feature automatic deallocation when destroyed. WeakQubitRefs, on
the other hand, do not share this feature, allowing to copy them and pass
them along the compiler pipeline, while the actual qubit objects may be
garbage-collected (and, thus, cleaned up early). Otherwise there is no
difference between a WeakQubitRef and a Qubit object.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 projectq	

 	
 	
 projectq.backends	

 	
 	
 projectq.cengines	

 	
 	
 projectq.libs	

 	
 	
 projectq.libs.math	

 	
 	
 projectq.meta	

 	
 	
 projectq.ops	

 	
 	
 projectq.setups	

 	
 	
 projectq.setups.decompositions	

 	
 	
 projectq.setups.decompositions.arb1qubit2rzandry	

 	
 	
 projectq.setups.decompositions.barrier	

 	
 	
 projectq.setups.decompositions.carb1qubit2cnotrzandry	

 	
 	
 projectq.setups.decompositions.cnu2toffoliandcu	

 	
 	
 projectq.setups.decompositions.crz2cxandrz	

 	
 	
 projectq.setups.decompositions.entangle	

 	
 	
 projectq.setups.decompositions.globalphase	

 	
 	
 projectq.setups.decompositions.ph2r	

 	
 	
 projectq.setups.decompositions.qft2crandhadamard	

 	
 	
 projectq.setups.decompositions.r2rzandph	

 	
 	
 projectq.setups.decompositions.rx2rz	

 	
 	
 projectq.setups.decompositions.ry2rz	

 	
 	
 projectq.setups.decompositions.swap2cnot	

 	
 	
 projectq.setups.decompositions.time_evolution	

 	
 	
 projectq.setups.decompositions.toffoli2cnotandtgate	

 	
 	
 projectq.setups.default	

 	
 	
 projectq.setups.ibm	

 	
 	
 projectq.setups.ibm16	

 	
 	
 projectq.types	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | X
 | Y
 | Z

_

 	
 	__bool__() (projectq.types.BasicQubit method)

 	(projectq.types.Qureg method)

 	__copy__() (projectq.types.Qubit method)

 	__deepcopy__() (projectq.types.Qubit method)

 	__del__() (projectq.types.Qubit method)

 	__eq__() (projectq.types.BasicQubit method)

 	__hash__() (projectq.types.BasicQubit method)

 	__init__() (projectq.backends.CircuitDrawer method)

 	(projectq.backends.CommandPrinter method)

 	(projectq.backends.IBMBackend method)

 	(projectq.backends.ResourceCounter method)

 	(projectq.backends.Simulator method)

 	(projectq.cengines.AutoReplacer method)

 	(projectq.cengines.BasicEngine method)

 	(projectq.cengines.CommandModifier method)

 	(projectq.cengines.DecompositionRule method)

 	(projectq.cengines.DecompositionRuleSet method)

 	(projectq.cengines.DummyEngine method)

 	(projectq.cengines.ForwarderEngine method)

 	(projectq.cengines.IBMCNOTMapper method)

 	(projectq.cengines.InstructionFilter method)

 	(projectq.cengines.LocalOptimizer method)

 	(projectq.cengines.MainEngine method)

 	(projectq.cengines.ManualMapper method)

 	(projectq.cengines.TagRemover method)

 	(projectq.libs.math.AddConstant method)

 	(projectq.libs.math.AddConstantModN method)

 	(projectq.libs.math.MultiplyByConstantModN method)

 	(projectq.meta.Compute method)

 	(projectq.meta.Control method)

 	(projectq.meta.CustomUncompute method)

 	(projectq.meta.Dagger method)

 	(projectq.meta.Loop method)

 	(projectq.meta.LoopTag method)

 	(projectq.meta.QubitPlacementTag method)

 	(projectq.ops.BasicGate method)

 	(projectq.ops.BasicMathGate method)

 	(projectq.ops.BasicPhaseGate method)

 	(projectq.ops.BasicRotationGate method)

 	(projectq.ops.Command method)

 	(projectq.ops.ControlledGate method)

 	(projectq.ops.DaggeredGate method)

 	(projectq.ops.QubitOperator method)

 	(projectq.ops.Tensor method)

 	(projectq.ops.TimeEvolution method)

 	(projectq.types.BasicQubit method)

 	
 	__int__() (projectq.types.BasicQubit method)

 	(projectq.types.Qureg method)

 	__nonzero__() (projectq.types.BasicQubit method)

 	(projectq.types.Qureg method)

 	__or__() (projectq.ops.BasicGate method)

 	(projectq.ops.ControlledGate method)

 	(projectq.ops.Tensor method)

 	(projectq.ops.TimeEvolution method)

 	__str__() (projectq.types.BasicQubit method)

 	(projectq.types.Qureg method)

 	__weakref__ (projectq.types.BasicQubit attribute)

 	(projectq.types.Qureg attribute)

A

 	
 	active_qubits (projectq.cengines.MainEngine attribute)

 	add_control_qubits() (projectq.ops.Command method)

 	add_decomposition_rule() (projectq.cengines.DecompositionRuleSet method)

 	AddConstant (class in projectq.libs.math)

 	AddConstantModN (class in projectq.libs.math)

 	All (in module projectq.ops)

 	all_defined_decomposition_rules (in module projectq.setups.decompositions.arb1qubit2rzandry)

 	(in module projectq.setups.decompositions.barrier)

 	(in module projectq.setups.decompositions.carb1qubit2cnotrzandry)

 	(in module projectq.setups.decompositions.cnu2toffoliandcu)

 	(in module projectq.setups.decompositions.crz2cxandrz)

 	(in module projectq.setups.decompositions.entangle)

 	(in module projectq.setups.decompositions.globalphase)

 	(in module projectq.setups.decompositions.ph2r)

 	(in module projectq.setups.decompositions.qft2crandhadamard)

 	(in module projectq.setups.decompositions.r2rzandph)

 	(in module projectq.setups.decompositions.rx2rz)

 	(in module projectq.setups.decompositions.ry2rz)

 	(in module projectq.setups.decompositions.swap2cnot)

 	(in module projectq.setups.decompositions.time_evolution)

 	(in module projectq.setups.decompositions.toffoli2cnotandtgate)

 	
 	all_qubits (projectq.ops.Command attribute), [1]

 	allocate_qubit() (projectq.cengines.BasicEngine method)

 	allocate_qureg() (projectq.cengines.BasicEngine method)

 	AllocateDirtyQubitGate (class in projectq.ops)

 	AllocateQubitGate (class in projectq.ops)

 	apply_command() (in module projectq.ops)

 	apply_qubit_operator() (projectq.backends.Simulator method)

 	AutoReplacer (class in projectq.cengines)

B

 	
 	backend (projectq.cengines.MainEngine attribute)

 	BarrierGate (class in projectq.ops)

 	BasicEngine (class in projectq.cengines)

 	BasicGate (class in projectq.ops)

 	
 	BasicMathGate (class in projectq.ops)

 	BasicPhaseGate (class in projectq.ops)

 	BasicQubit (class in projectq.types)

 	BasicRotationGate (class in projectq.ops)

C

 	
 	C() (in module projectq.ops)

 	cheat() (projectq.backends.Simulator method)

 	CircuitDrawer (class in projectq.backends)

 	ClassicalInstructionGate (class in projectq.ops)

 	ClassicalSimulator (class in projectq.backends)

 	collapse_wavefunction() (projectq.backends.Simulator method)

 	Command (class in projectq.ops)

 	CommandModifier (class in projectq.cengines)

 	CommandPrinter (class in projectq.backends)

 	
 	CompareEngine (class in projectq.cengines)

 	compress() (projectq.ops.QubitOperator method)

 	Compute (class in projectq.meta)

 	ComputeTag (class in projectq.meta)

 	Control (class in projectq.meta)

 	control_qubits (projectq.ops.Command attribute), [1]

 	ControlledGate (class in projectq.ops)

 	CRz() (in module projectq.ops)

 	CustomUncompute (class in projectq.meta)

D

 	
 	Dagger (class in projectq.meta)

 	DaggeredGate (class in projectq.ops)

 	deallocate_qubit() (projectq.cengines.BasicEngine method)

 	DeallocateQubitGate (class in projectq.ops)

 	DecompositionRule (class in projectq.cengines)

 	
 	DecompositionRuleSet (class in projectq.cengines)

 	dirty_qubits (projectq.cengines.MainEngine attribute)

 	DirtyQubitTag (class in projectq.meta)

 	drop_engine_after() (in module projectq.meta)

 	DummyEngine (class in projectq.cengines)

E

 	
 	engine (projectq.ops.Command attribute), [1]

 	(projectq.types.Qureg attribute)

 	
 	EntangleGate (class in projectq.ops)

F

 	
 	FastForwardingGate (class in projectq.ops)

 	flush() (projectq.cengines.MainEngine method)

 	
 	FlushGate (class in projectq.ops)

 	ForwarderEngine (class in projectq.cengines)

G

 	
 	gate (projectq.ops.Command attribute)

 	gate_class_counts (projectq.backends.ResourceCounter attribute)

 	gate_counts (projectq.backends.ResourceCounter attribute)

 	generate_command() (projectq.ops.BasicGate method)

 	get_amplitude() (projectq.backends.Simulator method)

 	get_control_count() (in module projectq.meta)

 	get_engine_list() (in module projectq.setups.default)

 	(in module projectq.setups.ibm)

 	(in module projectq.setups.ibm16)

 	get_expectation_value() (projectq.backends.Simulator method)

 	get_inverse() (in module projectq.ops)

 	(projectq.libs.math.AddConstant method)

 	(projectq.libs.math.AddConstantModN method)

 	(projectq.ops.BasicGate method)

 	(projectq.ops.BasicPhaseGate method)

 	(projectq.ops.BasicRotationGate method)

 	(projectq.ops.Command method)

 	(projectq.ops.ControlledGate method)

 	(projectq.ops.DaggeredGate method)

 	(projectq.ops.Tensor method)

 	(projectq.ops.TimeEvolution method)

 	
 	get_latex() (projectq.backends.CircuitDrawer method)

 	get_math_function() (projectq.ops.BasicMathGate method)

 	get_measurement_result() (projectq.cengines.MainEngine method)

 	get_merged() (projectq.ops.BasicGate method)

 	(projectq.ops.BasicPhaseGate method)

 	(projectq.ops.BasicRotationGate method)

 	(projectq.ops.Command method)

 	(projectq.ops.TimeEvolution method)

 	get_new_qubit_id() (projectq.cengines.MainEngine method)

 	get_probabilities() (projectq.backends.IBMBackend method)

 	get_probability() (projectq.backends.Simulator method)

H

 	
 	hamiltonian (projectq.ops.TimeEvolution attribute)

 	
 	HGate (class in projectq.ops)

I

 	
 	IBMBackend (class in projectq.backends)

 	IBMCNOTMapper (class in projectq.cengines)

 	insert_engine() (in module projectq.meta)

 	InstructionFilter (class in projectq.cengines)

 	interchangeable_qubit_indices (projectq.ops.Command attribute)

 	is_available() (projectq.backends.CircuitDrawer method)

 	(projectq.backends.CommandPrinter method)

 	(projectq.backends.IBMBackend method)

 	(projectq.backends.ResourceCounter method)

 	(projectq.backends.Simulator method)

 	(projectq.cengines.BasicEngine method)

 	(projectq.cengines.IBMCNOTMapper method)

 	(projectq.cengines.InstructionFilter method)

 	
 	is_last_engine (projectq.cengines.BasicEngine attribute)

 	is_meta_tag_supported() (projectq.cengines.BasicEngine method)

 	isclose() (projectq.ops.QubitOperator method)

L

 	
 	LastEngineException

 	LocalOptimizer (class in projectq.cengines)

 	
 	Loop (class in projectq.meta)

 	loop_tag_id (projectq.meta.LoopTag attribute)

 	LoopTag (class in projectq.meta)

M

 	
 	main_engine (projectq.cengines.BasicEngine attribute)

 	(projectq.cengines.MainEngine attribute)

 	MainEngine (class in projectq.cengines)

 	make_tuple_of_qureg() (projectq.ops.BasicGate static method)

 	
 	ManualMapper (class in projectq.cengines)

 	map (projectq.cengines.ManualMapper attribute)

 	max_width (projectq.backends.ResourceCounter attribute)

 	MeasureGate (class in projectq.ops)

 	MultiplyByConstantModN (class in projectq.libs.math)

N

 	
 	next_engine (projectq.cengines.BasicEngine attribute)

 	(projectq.cengines.MainEngine attribute)

 	
 	NotInvertible

 	NotMergeable

P

 	
 	Ph (class in projectq.ops)

 	projectq.backends (module)

 	projectq.cengines (module)

 	projectq.libs (module)

 	projectq.libs.math (module)

 	projectq.meta (module)

 	projectq.ops (module)

 	projectq.setups (module)

 	projectq.setups.decompositions (module)

 	projectq.setups.decompositions.arb1qubit2rzandry (module)

 	projectq.setups.decompositions.barrier (module)

 	projectq.setups.decompositions.carb1qubit2cnotrzandry (module)

 	projectq.setups.decompositions.cnu2toffoliandcu (module)

 	projectq.setups.decompositions.crz2cxandrz (module)

 	
 	projectq.setups.decompositions.entangle (module)

 	projectq.setups.decompositions.globalphase (module)

 	projectq.setups.decompositions.ph2r (module)

 	projectq.setups.decompositions.qft2crandhadamard (module)

 	projectq.setups.decompositions.r2rzandph (module)

 	projectq.setups.decompositions.rx2rz (module)

 	projectq.setups.decompositions.ry2rz (module)

 	projectq.setups.decompositions.swap2cnot (module)

 	projectq.setups.decompositions.time_evolution (module)

 	projectq.setups.decompositions.toffoli2cnotandtgate (module)

 	projectq.setups.default (module)

 	projectq.setups.ibm (module)

 	projectq.setups.ibm16 (module)

 	projectq.types (module)

Q

 	
 	QFTGate (class in projectq.ops)

 	Qubit (class in projectq.types)

 	QubitOperator (class in projectq.ops)

 	
 	QubitPlacementTag (class in projectq.meta)

 	qubits (projectq.ops.Command attribute)

 	Qureg (class in projectq.types)

R

 	
 	R (class in projectq.ops)

 	read_bit() (projectq.backends.ClassicalSimulator method)

 	read_register() (projectq.backends.ClassicalSimulator method)

 	receive() (projectq.backends.CircuitDrawer method)

 	(projectq.backends.CommandPrinter method)

 	(projectq.backends.IBMBackend method)

 	(projectq.backends.ResourceCounter method)

 	(projectq.backends.Simulator method)

 	(projectq.cengines.AutoReplacer method)

 	(projectq.cengines.CommandModifier method)

 	(projectq.cengines.ForwarderEngine method)

 	(projectq.cengines.IBMCNOTMapper method)

 	(projectq.cengines.InstructionFilter method)

 	(projectq.cengines.LocalOptimizer method)

 	(projectq.cengines.MainEngine method)

 	(projectq.cengines.ManualMapper method)

 	(projectq.cengines.TagRemover method)

 	
 	ResourceCounter (class in projectq.backends)

 	Rx (class in projectq.ops)

 	Ry (class in projectq.ops)

 	Rz (class in projectq.ops)

S

 	
 	SelfInverseGate (class in projectq.ops)

 	send() (projectq.cengines.BasicEngine method)

 	(projectq.cengines.MainEngine method)

 	set_measurement_result() (projectq.cengines.MainEngine method)

 	set_qubit_locations() (projectq.backends.CircuitDrawer method)

 	set_wavefunction() (projectq.backends.Simulator method)

 	
 	SGate (class in projectq.ops)

 	Simulator (class in projectq.backends)

 	SqrtSwapGate (class in projectq.ops)

 	SqrtXGate (class in projectq.ops)

 	SubConstant() (in module projectq.libs.math)

 	SubConstantModN() (in module projectq.libs.math)

 	SwapGate (class in projectq.ops)

T

 	
 	TagRemover (class in projectq.cengines)

 	tags (projectq.ops.Command attribute)

 	Tensor (class in projectq.ops)

 	terms (projectq.ops.QubitOperator attribute)

 	tex_str() (projectq.ops.BasicPhaseGate method)

 	(projectq.ops.BasicRotationGate method)

 	(projectq.ops.DaggeredGate method)

 	
 	TGate (class in projectq.ops)

 	time (projectq.ops.TimeEvolution attribute)

 	TimeEvolution (class in projectq.ops)

U

 	
 	Uncompute() (in module projectq.meta)

 	
 	UncomputeTag (class in projectq.meta)

W

 	
 	WeakQubitRef (class in projectq.types)

 	
 	write_bit() (projectq.backends.ClassicalSimulator method)

 	write_register() (projectq.backends.ClassicalSimulator method)

X

 	
 	XGate (class in projectq.ops)

Y

 	
 	YGate (class in projectq.ops)

Z

 	
 	ZGate (class in projectq.ops)

 _static/up.png

_images/teleport_circuit.png
)

7

Jahy
L

[¥)

N
L/

0) 1 H

(N
L/

_static/ajax-loader.gif

_images/bellpair_circuit.png
0} H [+

0)—AD

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 ProjectQ

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

