
projectq Documentation
Release 0.7.2

a

Apr 11, 2022

CONTENTS

1 Tutorial 3
1.1 Getting started . 3
1.2 Detailed instructions and OS-specific hints . 4
1.3 The ProjectQ syntax . 6
1.4 Basic quantum program . 7

2 Examples 9
2.1 Quantum Random Numbers . 9
2.2 Quantum Teleportation . 10
2.3 Shor’s algorithm for factoring . 13

3 Code Documentation 17
3.1 backends . 18
3.2 cengines . 39
3.3 libs . 65
3.4 meta . 80
3.5 ops . 93
3.6 setups . 134
3.7 types . 149

Python Module Index 153

Index 155

i

ii

projectq Documentation, Release 0.7.2

ProjectQ is an open-source software framework for quantum computing. It aims at providing tools which facilitate
inventing, implementing, testing, debugging, and running quantum algorithms using either classical hardware or
actual quantum devices.

The four core principles of this open-source effort are

1. Open & Free: ProjectQ is released under the Apache 2 license

2. Simple learning curve: It is implemented in Python and has an intuitive syntax

3. Easily extensible: Anyone can contribute to the compiler, the embedded domain-specific language, and libraries

4. Code quality: Code reviews, continuous integration testing (unit and functional tests)

Please cite
• Damian S. Steiger, Thomas Häner, and Matthias Troyer “ProjectQ: An Open Source Software Framework

for Quantum Computing” Quantum 2, 49 (2018) (published on arXiv on 23 Dec 2016)

• Thomas Häner, Damian S. Steiger, Krysta M. Svore, and Matthias Troyer “A Software Methodology for
Compiling Quantum Programs” Quantum Sci. Technol. 3 (2018) 020501 (published on arXiv on 5 Apr
2016)

Contents
• Tutorial: Tutorial containing instructions on how to get started with ProjectQ.

• Examples: Example implementations of few quantum algorithms

• Code Documentation: The code documentation of ProjectQ.

CONTENTS 1

https://doi.org/10.22331/q-2018-01-31-49
https://arxiv.org/abs/1612.08091
https://doi.org/10.1088/2058-9565/aaa5cc
http://arxiv.org/abs/1604.01401

projectq Documentation, Release 0.7.2

2 CONTENTS

CHAPTER

ONE

TUTORIAL

1.1 Getting started

To start using ProjectQ, simply run

python -m pip install --user projectq

Since version 0.6.0, ProjectQ is available as pre-compiled binary wheels in addition to the traditional source package.
These wheels should work on most platforms, provided that your processor supports AVX2 instructions. Should you
encounter any troubles while installation ProjectQ in binary form, you can always try tom compile the project manually
as described below. You may want to pass the –no-binary projectq flag to Pip during the installation to make sure that
you are downloading the source package.

Alternatively, you can also clone/download this repository (e.g., to your /home directory) and run

cd /home/projectq
python -m pip install --user .

ProjectQ comes with a high-performance quantum simulator written in C++. Please see the detailed OS specific in-
stallation instructions below to make sure that you are installing the fastest version.

Note: The setup will try to build a C++-Simulator, which is much faster than the Python implementation. If the C++
compilation were to fail, the setup will install a pure Python implementation of the simulator instead. The Python
simulator should work fine for small examples (e.g., running Shor’s algorithm for factoring 15 or 21).

If you want to skip the installation of the C++-Simulator altogether, you can define the PROJECTQ_DISABLE_CEXT
environment variable to avoid any compilation steps.

Note: If building the C++-Simulator does not work out of the box, consider specifying a different compiler. For
example:

env CC=g++-10 python -m pip install --user projectq

Please note that the compiler you specify must support at least C++11!

Note: Please use pip version v6.1.0 or higher as this ensures that dependencies are installed in the correct order.

3

https://github.com/projectq-framework
https://pip.pypa.io/en/stable/reference/pip_install/#installation-order

projectq Documentation, Release 0.7.2

Note: ProjectQ should be installed on each computer individually as the C++ simulator compilation creates binaries
which are optimized for the specific hardware on which it is being installed (potentially using our AVX version and
-march=native). Therefore, sharing the same ProjectQ installation across different hardware may cause some problems.

Install AWS Braket Backend requirement
AWS Braket Backend requires the use of the official AWS SDK for Python, Boto3. This is an extra requirement only
needed if you plan to use the AWS Braket Backend. To install ProjectQ inluding this requirement you can include it in
the installation instruction as

python -m pip install --user projectq[braket]

1.2 Detailed instructions and OS-specific hints

Ubuntu:

After having installed the build tools (for g++):

sudo apt-get install build-essential

You only need to install Python (and the package manager). For version 3, run

sudo apt-get install python3 python3-pip

When you then run

sudo python3 -m pip install --user projectq

all dependencies (such as numpy and pybind11) should be installed automatically.

ArchLinux/Manjaro:

Make sure that you have a C/C++ compiler installed:

sudo pacman -Syu gcc

You only need to install Python (and the package manager). For version 3, run

sudo pacman -Syu python python-pip

When you then run

sudo python3 -m pip install --user projectq

all dependencies (such as numpy and pybind11) should be installed automatically.

Windows:
It is easiest to install a pre-compiled version of Python, including numpy and many more useful packages.
One way to do so is using, e.g., the Python 3.7 installers from python.org or ANACONDA. Installing
ProjectQ right away will succeed for the (slow) Python simulator. For a compiled version of the simulator,
install the Visual C++ Build Tools and the Microsoft Windows SDK prior to doing a pip install. The
built simulator will not support multi-threading due to the limited OpenMP support of the Visual Studio
compiler.

4 Chapter 1. Tutorial

https://www.python.org/downloads
https://www.continuum.io/downloads

projectq Documentation, Release 0.7.2

If the Python executable is added to your PATH (option normally suggested at the end of the Python
installation procedure), you can then open a cmdline window (WIN + R, type “cmd” and click OK) and
enter the following in order to install ProjectQ:

python -m pip install --user projectq

Should you want to run multi-threaded simulations, you can install a compiler which supports newer
OpenMP versions, such as MinGW GCC and then manually build the C++ simulator with OpenMP en-
abled.

macOS:

Similarly to the other platforms, installing ProjectQ without the C++ simulator is really easy:

python3 -m pip install --user projectq

In order to install the fast C++ simulator, we require that a C++ compiler is installed on your system. There
are essentially three options you can choose from:

1. Using the compiler provided by Apple through the XCode command line tools.

2. Using Homebrew

3. Using MacPorts

For both options 2 and 3, you will be required to first install the XCode command line tools

Apple XCode command line tool
Install the XCode command line tools by opening a terminal window and running the following command:

xcode-select --install

Next, you will need to install Python and pip. See options 2 and 3 for information on how to install a
newer python version with either Homebrew or MacPorts. Here, we are using the standard python which
is preinstalled with macOS. Pip can be installed by:

sudo easy_install pip

Now, you can install ProjectQ with the C++ simulator using the standard command:

python3 -m pip install --user projectq

Note that the compiler provided by Apple is currently not able to compile ProjectQ’s multi-threaded code.

Homebrew
First install the XCode command line tools. Then install Homebrew with the following command:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
→˓install/master/install)"

Then proceed to install Python as well as a C/C++ compiler (note: gcc installed via Homebrew may lead
to some issues):

brew install python llvm

You should now be able to install ProjectQ with the C++ simulator using the following command:

1.2. Detailed instructions and OS-specific hints 5

projectq Documentation, Release 0.7.2

env P=/usr/local/opt/llvm/bin CC=$P/clang CXX=$P/clang++ python3 -m pip␣
→˓install --user projectq

MacPorts
Visit macports.org and install the latest version that corresponds to your operating system’s version. Af-
terwards, open a new terminal window.

Then, use macports to install Python 3.7 by entering the following command

sudo port install python37

It might show a warning that if you intend to use python from the terminal. In this case, you should also
install

sudo port install py37-gnureadline

Install pip by

sudo port install py37-pip

Next, we can install ProjectQ with the high performance simulator written in C++. First, we will need to
install a suitable compiler with support for C++11, OpenMP, and instrinsics. The best option is to install
clang 9.0 also using macports (note: gcc installed via macports does not work).

sudo port install clang-9.0

ProjectQ is now installed by:

env CC=clang-mp-9.0 env CXX=clang++-mp-9.0 /opt/local/bin/python3.7 -m pip␣
→˓install --user projectq

1.3 The ProjectQ syntax

Our goal is to have an intuitive syntax in order to enable an easy learning curve. Therefore, ProjectQ features a lean
syntax which is close to the mathematical notation used in physics.

For example, consider applying an x-rotation by an angle theta to a qubit. In ProjectQ, this looks as follows:

Rx(theta) | qubit

whereas the corresponding notation in physics would be

𝑅𝑥(𝜃) |qubit⟩

Moreover, the |-operator separates the classical arguments (on the left) from the quantum arguments (on the right).
Next, you will see a basic quantum program using this syntax. Further examples can be found in the docs (Examples
in the panel on the left) and in the ProjectQ examples folder on GitHub.

6 Chapter 1. Tutorial

https://www.macports.org/install.php
https://github.com/ProjectQ-Framework/ProjectQ

projectq Documentation, Release 0.7.2

1.4 Basic quantum program

To check out the ProjectQ syntax in action and to see whether the installation worked, try to run the following basic
example

from projectq import MainEngine # import the main compiler engine
from projectq.ops import H, Measure # import the operations we want to perform␣
→˓(Hadamard and measurement)

eng = MainEngine() # create a default compiler (the back-end is a simulator)
qubit = eng.allocate_qubit() # allocate 1 qubit

H | qubit # apply a Hadamard gate
Measure | qubit # measure the qubit

eng.flush() # flush all gates (and execute measurements)
print("Measured {}".format(int(qubit))) # output measurement result

Which creates random bits (0 or 1).

1.4. Basic quantum program 7

projectq Documentation, Release 0.7.2

8 Chapter 1. Tutorial

CHAPTER

TWO

EXAMPLES

All of these example codes and more can be found on GitHub.

2.1 Quantum Random Numbers

The most basic example is a quantum random number generator (QRNG). It can be found in the examples-folder of
ProjectQ. The code looks as follows

-*- coding: utf-8 -*-
pylint: skip-file

"""Example of a simple quantum random number generator."""

from projectq import MainEngine
from projectq.ops import H, Measure

create a main compiler engine
eng = MainEngine()

allocate one qubit
q1 = eng.allocate_qubit()

put it in superposition
H | q1

measure
Measure | q1

eng.flush()
print the result:
print("Measured: {}".format(int(q1)))

Running this code three times may yield, e.g.,

$ python examples/quantum_random_numbers.py
Measured: 0
$ python examples/quantum_random_numbers.py
Measured: 0
$ python examples/quantum_random_numbers.py
Measured: 1

9

https://github.com/ProjectQ-Framework/ProjectQ/tree/master/examples/

projectq Documentation, Release 0.7.2

These values are obtained by simulating this quantum algorithm classically. By changing three lines of code, we can
run an actual quantum random number generator using the IBM Quantum Experience back-end:

$ python examples/quantum_random_numbers_ibm.py
Measured: 1
$ python examples/quantum_random_numbers_ibm.py
Measured: 0

All you need to do is:

• Create an account for IBM’s Quantum Experience

• And perform these minor changes:

--- /home/docs/checkouts/readthedocs.org/user_builds/projectq/checkouts/v0.7.2/
→˓examples/quantum_random_numbers.py
+++ /home/docs/checkouts/readthedocs.org/user_builds/projectq/checkouts/v0.7.2/
→˓examples/quantum_random_numbers_ibm.py
@@ -1,13 +1,15 @@
-*- coding: utf-8 -*-
pylint: skip-file

-"""Example of a simple quantum random number generator."""
+"""Example of a simple quantum random number generator using IBM's API."""

+import projectq.setups.ibm
from projectq import MainEngine
+from projectq.backends import IBMBackend
from projectq.ops import H, Measure

create a main compiler engine
-eng = MainEngine()
+eng = MainEngine(IBMBackend(), engine_list=projectq.setups.ibm.get_engine_
→˓list())

allocate one qubit
q1 = eng.allocate_qubit()

2.2 Quantum Teleportation

Alice has a qubit in some interesting state |𝜓⟩, which she would like to show to Bob. This does not really make sense,
since Bob would not be able to look at the qubit without collapsing the superposition; but let’s just assume Alice wants
to send her state to Bob for some reason. What she can do is use quantum teleportation to achieve this task. Yet, this
only works if Alice and Bob share a Bell-pair (which luckily happens to be the case). A Bell-pair is a pair of qubits in
the state

|𝐴⟩ ⊗ |𝐵⟩ = 1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩)

They can create a Bell-pair using a very simple circuit which first applies a Hadamard gate to the first qubit, and then
flips the second qubit conditional on the first qubit being in |1⟩. The circuit diagram can be generated by calling the
function

10 Chapter 2. Examples

https://quantumexperience.ng.bluemix.net/

projectq Documentation, Release 0.7.2

from projectq import MainEngine
Args:

eng (MainEngine): MainEngine from which to allocate the qubits.

Returns:
bell_pair (tuple<Qubits>): The Bell-pair.

"""
b1 = eng.allocate_qubit()
b2 = eng.allocate_qubit()

with a main compiler engine which has a CircuitDrawer back-end, i.e.,

-*- coding: utf-8 -*-
pylint: skip-file

"""Example implementation of a quantum circuit generating a Bell pair state."""

import matplotlib.pyplot as plt
from teleport import create_bell_pair

from projectq import MainEngine
from projectq.backends import CircuitDrawer
from projectq.libs.hist import histogram
from projectq.setups.default import get_engine_list

create a main compiler engine
drawing_engine = CircuitDrawer()
eng = MainEngine(engine_list=get_engine_list() + [drawing_engine])

qb0, qb1 = create_bell_pair(eng)

eng.flush()
print(drawing_engine.get_latex())

histogram(eng.backend, [qb0, qb1])
plt.show()

The resulting LaTeX code can be compiled to produce the circuit diagram:

$ python examples/bellpair_circuit.py > bellpair_circuit.tex
$ pdflatex bellpair_circuit.tex

The output looks as follows:

Now, this Bell-pair can be used to achieve the quantum teleportation: Alice entangles her qubit with her share of the
Bell-pair. Then, she measures both qubits; one in the Z-basis (Measure) and one in the Hadamard basis (Hadamard,
then Measure). She then sends her measurement results to Bob who, depending on these outcomes, applies a Pauli-X
or -Z gate.

The complete example looks as follows:

2.2. Quantum Teleportation 11

projectq Documentation, Release 0.7.2

1 # -*- coding: utf-8 -*-
2 # pylint: skip-file
3

4 """Example of a quantum teleportation circuit."""
5

6 from projectq import MainEngine
7 Args:
8 eng (MainEngine): MainEngine from which to allocate the qubits.
9

10 Returns:
11 bell_pair (tuple<Qubits>): The Bell-pair.
12 """
13 b1 = eng.allocate_qubit()
14 b2 = eng.allocate_qubit()
15

16 H | b1
17 then transforms to the state that Alice would like to send to Bob.
18 verbose (bool): If True, info messages will be printed.
19

20 """
21 # make a Bell-pair
22 b1, b2 = create_bell_pair(eng)
23

24 # Alice creates a nice state to send
25 psi = eng.allocate_qubit()
26 if verbose:
27 print("Alice is creating her state from scratch, i.e., |0>.")
28 state_creation_function(eng, psi)
29

30 # entangle it with Alice's b1
31 CNOT | (psi, b1)
32 if verbose:
33 print("Alice entangled her qubit with her share of the Bell-pair.")
34

35 # measure two values (once in Hadamard basis) and send the bits to Bob
36 H | psi
37 Measure | psi
38 Measure | b1
39 msg_to_bob = [int(psi), int(b1)]
40 if verbose:
41 print("Alice is sending the message {} to Bob.".format(msg_to_bob))
42

43 # Bob may have to apply up to two operation depending on the message sent
44 # by Alice:
45 with Control(eng, b1):
46 X | b2
47 with Control(eng, psi):
48 Z | b2
49

50 # try to uncompute the psi state
51 if verbose:
52 print("Bob is trying to uncompute the state.")
53 with Dagger(eng):

(continues on next page)

12 Chapter 2. Examples

projectq Documentation, Release 0.7.2

(continued from previous page)

54 state_creation_function(eng, b2)
55

56 # check whether the uncompute was successful. The simulator only allows to
57 # delete qubits which are in a computational basis state.
58 del b2
59 eng.flush()
60

61 if verbose:
62 print("Bob successfully arrived at |0>")
63

64

65 if __name__ == "__main__":
66 # create a main compiler engine with a simulator backend:
67 eng = MainEngine()
68

69 # define our state-creation routine, which transforms a |0> to the state
70 # we would like to send. Bob can then try to uncompute it and, if he
71 # arrives back at |0>, we know that the teleportation worked.
72 def create_state(eng, qb):
73 """Create a quantum state."""

and the corresponding circuit can be generated using

$ python examples/teleport_circuit.py > teleport_circuit.tex
$ pdflatex teleport_circuit.tex

which produces (after renaming of the qubits inside the tex-file):

2.3 Shor’s algorithm for factoring

As a third example, consider Shor’s algorithm for factoring, which for a given (large) number 𝑁 determines the two
prime factor 𝑝1 and 𝑝2 such that 𝑝1 · 𝑝2 = 𝑁 in polynomial time! This is a superpolynomial speed-up over the best
known classical algorithm (which is the number field sieve) and enables the breaking of modern encryption schemes
such as RSA on a future quantum computer.

A tiny bit of number theory There is a small amount of number theory involved, which reduces the problem of fac-
toring to period-finding of the function

𝑓(𝑥) = 𝑎𝑥 mod𝑁

for some a (relative prime to N, otherwise we get a factor right away anyway by calling gcd(a,N)). The period
r for a function f(x) is the number for which 𝑓(𝑥) = 𝑓(𝑥 + 𝑟)∀𝑥 holds. In this case, this means that 𝑎𝑥 =
𝑎𝑥+𝑟 (mod𝑁) ∀𝑥. Therefore, 𝑎𝑟 = 1+𝑞𝑁 for some integer q and hence, 𝑎𝑟−1 = (𝑎𝑟/2−1)(𝑎𝑟/2+1) = 𝑞𝑁 .
This suggests that using the gcd on N and 𝑎𝑟/2 ± 1 we may find a factor of N!

Factoring on a quantum computer: An example At the heart of Shor’s algorithm lies modular exponentiation of a

2.3. Shor’s algorithm for factoring 13

projectq Documentation, Release 0.7.2

classically known constant (denoted by a in the code) by a quantum superposition of numbers 𝑥, i.e.,

|𝑥⟩|0⟩ ↦→ |𝑥⟩|𝑎𝑥 mod𝑁⟩

Using 𝑁 = 15 and 𝑎 = 2, and applying this operation to the uniform superposition over all 𝑥 leads to the
superposition (modulo renormalization)

|0⟩|1⟩+ |1⟩|2⟩+ |2⟩|4⟩+ |3⟩|8⟩+ |4⟩|1⟩+ |5⟩|2⟩+ |6⟩|4⟩+ · · ·

In Shor’s algorithm, the second register will not be touched again before the end of the quantum program, which
means it might as well be measured now. Let’s assume we measure 2; this collapses the state above to

|1⟩|2⟩+ |5⟩|2⟩+ |9⟩|2⟩+ · · ·

The period of a modulo N can now be read off. On a quantum computer, this information can be accessed by
applying an inverse quantum Fourier transform to the x-register, followed by a measurement of x.

Implementation There is an implementation of Shor’s algorithm in the examples folder. It uses the implementation
by Beauregard, arxiv:0205095 to factor an n-bit number using 2n+3 qubits. In this implementation, the modular
exponentiation is carried out using modular multiplication and shift. Furthermore it uses the semi-classical
quantum Fourier transform [see arxiv:9511007]: Pulling the final measurement of the x-register through the
final inverse quantum Fourier transform allows to run the 2n modular multiplications serially, which keeps one
from having to store the 2n qubits of x.

Let’s run it using the ProjectQ simulator:

$ python3 examples/shor.py

projectq

Implementation of Shor's algorithm.
Number to factor: 15

Factoring N = 15: 00000001

Factors found :-) : 3 * 5 = 15

Simulating Shor’s algorithm at the level of single-qubit gates and CNOTs already takes quite a bit of time for
larger numbers than 15. To turn on our emulation feature, which does not decompose the modular arithmetic
to low-level gates, but carries it out directly instead, we can change the line

86 r = Fraction(y).limit_denominator(N - 1).denominator
87

88 # return the (potential) period
89 return r
90

91

92 # Filter function, which defines the gate set for the first optimization
93 # (don't decompose QFTs and iQFTs to make cancellation easier)
94 def high_level_gates(eng, cmd):
95 """Filter high-level gates."""
96 g = cmd.gate
97 if g == QFT or get_inverse(g) == QFT or g == Swap:
98 return True
99 if isinstance(g, BasicMathGate):

14 Chapter 2. Examples

https://arxiv.org/abs/quant-ph/0205095
https://arxiv.org/abs/quant-ph/9511007

projectq Documentation, Release 0.7.2

in examples/shor.py to return True. This allows to factor, e.g. 𝑁 = 4, 028, 033 in under 3 minutes on a regular
laptop!

The most important part of the code is

50

51 X | x[0]
52

53 measurements = [0] * (2 * n) # will hold the 2n measurement results
54

55 ctrl_qubit = eng.allocate_qubit()
56

57 for k in range(2 * n):
58 current_a = pow(a, 1 << (2 * n - 1 - k), N)
59 # one iteration of 1-qubit QPE
60 H | ctrl_qubit
61 with Control(eng, ctrl_qubit):
62 MultiplyByConstantModN(current_a, N) | x
63

64 # perform inverse QFT --> Rotations conditioned on previous outcomes
65 for i in range(k):
66 if measurements[i]:
67 R(-math.pi / (1 << (k - i))) | ctrl_qubit
68 H | ctrl_qubit
69

which executes the 2n modular multiplications conditioned on a control qubit ctrl_qubit in a uniform superposi-
tion of 0 and 1. The control qubit is then measured after performing the semi-classical inverse quantum Fourier
transform and the measurement outcome is saved in the list measurements, followed by a reset of the control
qubit to state 0.

2.3. Shor’s algorithm for factoring 15

projectq Documentation, Release 0.7.2

16 Chapter 2. Examples

CHAPTER

THREE

CODE DOCUMENTATION

Welcome to the package documentation of ProjectQ. You may now browse through the entire documentation and
discover the capabilities of the ProjectQ framework.

For a detailed documentation of a subpackage or module, click on its name below:

17

projectq Documentation, Release 0.7.2

3.1 backends

projectq.backends._aqt ProjectQ module for supporting the AQT platform
projectq.backends._awsbraket ProjectQ module for supporting the AWS Braket plat-

form
projectq.backends._circuits ProjectQ module for exporting/printing quantum cir-

cuits
projectq.backends._exceptions Exception classes for projectq.backends.
projectq.backends._ibm ProjectQ module for supporting the IBM QE platform
projectq.backends._ionq ProjectQ module for supporting the IonQ platform
projectq.backends._printer Contains a compiler engine which prints commands to

stdout prior to sending them on to the next engines.
projectq.backends._resource Contain a compiler engine to calculate resource count

used by a quantum circuit.
projectq.backends._sim ProjectQ module dedicated to simulation
projectq.backends._unitary Contain a backend that saves the unitary of a quantum

circuit.
projectq.backends.AQTBackend([use_hardware,
...])

Backend for building circuits and submitting them to the
AQT API.

projectq.backends.AWSBraketBackend(*args, ...) Dummy class
projectq.backends.CircuitDrawer([...]) CircuitDrawer is a compiler engine which generates

TikZ code for drawing quantum circuits.
projectq.backends.
CircuitDrawerMatplotlib([...])

CircuitDrawerMatplotlib is a compiler engine which us-
ing Matplotlib library for drawing quantum circuits.

projectq.backends.ClassicalSimulator() A simple introspective simulator that only permits clas-
sical operations.

projectq.backends.CommandPrinter([...]) Compiler engine that prints command to the standard
output.

projectq.backends.DeviceNotHandledError Exception raised if a selected device cannot handle the
circuit or is not supported by ProjectQ.

projectq.backends.DeviceOfflineError Raised when a device is required but is currently offline.
projectq.backends.DeviceTooSmall Raised when a device does not have enough qubits for a

desired job.
projectq.backends.IBMBackend([use_hardware,
...])

Define the compiler engine class that handles interac-
tions with the IBM API.

projectq.backends.IonQBackend([...]) Backend for building circuits and submitting them to the
IonQ API.

projectq.backends.ResourceCounter() ResourceCounter is a compiler engine which counts the
number of gates and max.

projectq.backends.Simulator([gate_fusion, ...]) Simulator is a compiler engine which simulates a quan-
tum computer using C++-based kernels.

projectq.backends.UnitarySimulator() Simulator engine aimed at calculating the unitary trans-
formation that represents the current quantum circuit.

18 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

3.1.1 Submodules

_aqt

ProjectQ module for supporting the AQT platform

_awsbraket

ProjectQ module for supporting the AWS Braket platform

class projectq.backends._awsbraket.AWSBraketBackend(*args, **kwargs)
Dummy class

_circuits

ProjectQ module for exporting/printing quantum circuits

_exceptions

Exception classes for projectq.backends.

exception projectq.backends._exceptions.DeviceNotHandledError

Exception raised if a selected device cannot handle the circuit or is not supported by ProjectQ.

exception projectq.backends._exceptions.DeviceOfflineError

Raised when a device is required but is currently offline.

exception projectq.backends._exceptions.DeviceTooSmall

Raised when a device does not have enough qubits for a desired job.

exception projectq.backends._exceptions.InvalidCommandError

Raised if the backend encounters an invalid command.

exception projectq.backends._exceptions.JobSubmissionError

Raised when the job creation API contains an error of some kind.

exception projectq.backends._exceptions.MidCircuitMeasurementError

Raised when a mid-circuit measurement is detected on a qubit.

exception projectq.backends._exceptions.RequestTimeoutError

Raised if a request to the job creation API times out.

_ibm

ProjectQ module for supporting the IBM QE platform

3.1. backends 19

projectq Documentation, Release 0.7.2

_ionq

ProjectQ module for supporting the IonQ platform

class projectq.backends._ionq.IonQBackend(use_hardware=False, num_runs=100, verbose=False,
token=None, device='ionq_simulator', num_retries=3000,
interval=1, retrieve_execution=None)

Backend for building circuits and submitting them to the IonQ API.

get_probabilities(qureg)
Given the provided qubit register, determine the probability of each possible outcome.

Note: This method should only be called after a circuit has been run and its results are available.

Parameters qureg (Qureg) – A ProjectQ Qureg object.

Returns A dict mapping of states -> probability.

Return type dict

get_probability(state, qureg)
Shortcut to get a specific state’s probability.

Parameters
• state (str) – A state in bit-string format.

• qureg (Qureg) – A ProjectQ Qureg object.

Returns The probability for the provided state.

Return type float

is_available(cmd)
Test if this backend is available to process the provided command.

Parameters cmd (Command) – A command to process.

Returns If this backend can process the command.

Return type bool

receive(command_list)
Receive a command list from the ProjectQ engine pipeline.

If a given command is a “flush” operation, the pending circuit will be submitted to IonQ’s API for process-
ing.

Parameters command_list (list[Command]) – A list of ProjectQ Command objects.

20 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

_printer

Contains a compiler engine which prints commands to stdout prior to sending them on to the next engines.

class projectq.backends._printer.CommandPrinter(accept_input=True, default_measure=False,
in_place=False)

Compiler engine that prints command to the standard output.

CommandPrinter is a compiler engine which prints commands to stdout prior to sending them on to the next
compiler engine.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: Returns True if the CommandPrinter is the last engine (since
it can print any command).

Parameters cmd (Command) – Command of which to check availability (all Commands can be
printed).

Returns True, unless the next engine cannot handle the Command (if there is a next engine).

Return type availability (bool)

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, print the commands, and then send them on to the
next engine.

Parameters command_list (list<Command>) – List of Commands to print (and potentially
send on to the next engine).

_resource

Contain a compiler engine to calculate resource count used by a quantum circuit.

A resrouce counter compiler engine counts the number of calls for each type of gate used in a circuit, in addition to the
max. number of active qubits.

class projectq.backends._resource.ResourceCounter

ResourceCounter is a compiler engine which counts the number of gates and max. number of active qubits.

gate_counts

Dictionary of gate counts. The keys are tuples of the form (cmd.gate, ctrl_cnt), where ctrl_cnt is the number
of control qubits.

Type dict

gate_class_counts

Dictionary of gate class counts. The keys are tuples of the form (cmd.gate.__class__, ctrl_cnt), where
ctrl_cnt is the number of control qubits.

Type dict

max_width

Maximal width (=max. number of active qubits at any given point).

Type int

Properties: depth_of_dag (int): It is the longest path in the directed acyclic graph (DAG) of the program.

3.1. backends 21

projectq Documentation, Release 0.7.2

property depth_of_dag

Return the depth of the DAG.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: Returns True if the ResourceCounter is the last engine (since
it can count any command).

Parameters cmd (Command) – Command for which to check availability (all Commands can be
counted).

Returns True, unless the next engine cannot handle the Command (if there is a next engine).

Return type availability (bool)

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, increases the counters of the received commands,
and then send them on to the next engine.

Parameters command_list (list<Command>) – List of commands to receive (and count).

_sim

ProjectQ module dedicated to simulation

_unitary

Contain a backend that saves the unitary of a quantum circuit.

class projectq.backends._unitary.UnitarySimulator

Simulator engine aimed at calculating the unitary transformation that represents the current quantum circuit.

unitary

Current unitary representing the quantum circuit being processed so far.

Type np.ndarray

history

List of previous quantum circuit unitaries.

Type list<np.ndarray>

Note: The current implementation of this backend resets the unitary after the first gate that is neither a qubit
deallocation nor a measurement occurs after one of those two aforementioned gates.

The old unitary call be accessed at anytime after such a situation occurs via the history property.

eng = MainEngine(backend=UnitarySimulator(), engine_list=[])
qureg = eng.allocate_qureg(3)
All(X) | qureg

eng.flush()
All(Measure) | qureg
eng.deallocate_qubit(qureg[1])

(continues on next page)

22 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

(continued from previous page)

X | qureg[0] # WARNING: appending gate after measurements or deallocations resets␣
→˓the unitary

property history

Access all previous unitary matrices.

The current unitary matrix is appended to this list once a gate is received after either a measurement or a
qubit deallocation has occurred.

Returns A list where the elements are all previous unitary matrices representing the circuit, sep-
arated by measurement/deallocate gates.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: The unitary simulator can deal with all arbitrarily-controlled
gates which provide a gate-matrix (via gate.matrix).

Parameters cmd (Command) – Command for which to check availability (single- qubit gate, ar-
bitrary controls)

Returns True if it can be simulated and False otherwise.

measure_qubits(ids)
Measure the qubits with IDs ids and return a list of measurement outcomes (True/False).

Parameters ids (list<int>) – List of qubit IDs to measure.

Returns List of measurement results (containing either True or False).

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine and handle them:
• update the unitary of the quantum circuit

• update the internal quantum state if a measurement or a qubit deallocation occurs

prior to sending them on to the next engine.

Parameters command_list (list<Command>) – List of commands to execute on the simulator.

property unitary

Access the last unitary matrix directly.

Returns A numpy array which is the unitary matrix of the circuit.

3.1. backends 23

projectq Documentation, Release 0.7.2

3.1.2 Module contents

Contains back-ends for ProjectQ.

This includes:

• a debugging tool to print all received commands (CommandPrinter)

• a circuit drawing engine (which can be used anywhere within the compilation chain)

• a simulator with emulation capabilities

• a resource counter (counts gates and keeps track of the maximal width of the circuit)

• an interface to the IBM Quantum Experience chip (and simulator).

• an interface to the AQT trapped ion system (and simulator).

• an interface to the AWS Braket service decives (and simulators)

• an interface to the IonQ trapped ionq hardware (and simulator).

class projectq.backends.AQTBackend(use_hardware=False, num_runs=100, verbose=False, token='',
device='simulator', num_retries=3000, interval=1,
retrieve_execution=None)

Backend for building circuits and submitting them to the AQT API.

The AQT Backend class, which stores the circuit, transforms it to the appropriate data format, and sends the
circuit through the AQT API.

__init__(use_hardware=False, num_runs=100, verbose=False, token='', device='simulator',
num_retries=3000, interval=1, retrieve_execution=None)

Initialize the Backend object.

Parameters
• use_hardware (bool) – If True, the code is run on the AQT quantum chip (instead of

using the AQT simulator)

• num_runs (int) – Number of runs to collect statistics. (default is 100, max is usually
around 200)

• verbose (bool) – If True, statistics are printed, in addition to the measurement result being
registered (at the end of the circuit).

• token (str) – AQT user API token.

• device (str) – name of the AQT device to use. simulator By default

• num_retries (int) – Number of times to retry to obtain results from the AQT API. (de-
fault is 3000)

• interval (float, int) – Number of seconds between successive attempts to obtain
results from the AQT API. (default is 1)

• retrieve_execution (int) – Job ID to retrieve instead of re- running the circuit (e.g.,
if previous run timed out).

get_probabilities(qureg)
Return the probability of the outcome bit_string when measuring the quantum register qureg.

Return the list of basis states with corresponding probabilities. If input qureg is a subset of the register
used for the experiment, then returns the projected probabilities over the other states. The measured bits
are ordered according to the supplied quantum register, i.e., the left-most bit in the state-string corresponds
to the first qubit in the supplied quantum register.

24 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Warning: Only call this function after the circuit has been executed!

Parameters qureg (list<Qubit>) – Quantum register determining the order of the qubits.

Returns Dictionary mapping n-bit strings to probabilities.

Return type probability_dict (dict)

Raises RuntimeError – If no data is available (i.e., if the circuit has not been executed). Or if a
qubit was supplied which was not present in the circuit (might have gotten optimized away).

is_available(cmd)
Return true if the command can be executed.

The AQT ion trap can only do Rx,Ry and Rxx.

Parameters cmd (Command) – Command for which to check availability

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it until completion. Upon flush, send the data to the
AQT API.

Parameters command_list – List of commands to execute

class projectq.backends.AWSBraketBackend(*args, **kwargs)
Dummy class

__init__(*args, **kwargs)

class projectq.backends.CircuitDrawer(accept_input=False, default_measure=0)
CircuitDrawer is a compiler engine which generates TikZ code for drawing quantum circuits.

The circuit can be modified by editing the settings.json file which is generated upon first execution. This includes
adjusting the gate width, height, shadowing, line thickness, and many more options.

After initializing the CircuitDrawer, it can also be given the mapping from qubit IDs to wire location (via the
set_qubit_locations() function):

circuit_backend = CircuitDrawer()
circuit_backend.set_qubit_locations({0: 1, 1: 0}) # swap lines 0 and 1
eng = MainEngine(circuit_backend)

... # run quantum algorithm on this main engine

print(circuit_backend.get_latex()) # prints LaTeX code

To see the qubit IDs in the generated circuit, simply set the draw_id option in the settings.json file under
“gates”:”AllocateQubitGate” to True:

"gates": {
"AllocateQubitGate": {

"draw_id": True,
"height": 0.15,
"width": 0.2,
"pre_offset": 0.1,

(continues on next page)

3.1. backends 25

projectq Documentation, Release 0.7.2

(continued from previous page)

"offset": 0.1
},
...

The settings.json file has the following structure:

{
"control": { # settings for control "circle"

"shadow": false,
"size": 0.1

},
"gate_shadow": true, # enable/disable shadows for all gates
"gates": {

"GateClassString": {
GATE_PROPERTIES

}
"GateClassString2": {

...
},
"lines": { # settings for qubit lines

"double_classical": true, # draw double-lines for
classical bits

"double_lines_sep": 0.04, # gap between the two lines
for double lines

"init_quantum": true, # start out with quantum bits
"style": "very thin" # line style

}
}

All gates (except for the ones requiring special treatment) support the following properties:

"GateClassString": {
"height": GATE_HEIGHT,
"width": GATE_WIDTH
"pre_offset": OFFSET_BEFORE_PLACEMENT,
"offset": OFFSET_AFTER_PLACEMENT,

},

__init__(accept_input=False, default_measure=0)
Initialize a circuit drawing engine.

The TikZ code generator uses a settings file (settings.json), which can be altered by the user. It contains
gate widths, heights, offsets, etc.

Parameters
• accept_input (bool) – If accept_input is true, the printer queries the user to input mea-

surement results if the CircuitDrawer is the last engine. Otherwise, all measurements yield
the result default_measure (0 or 1).

• default_measure (bool) – Default value to use as measurement results if accept_input
is False and there is no underlying backend to register real measurement results.

get_latex(ordered=False, draw_gates_in_parallel=True)
Return the latex document string representing the circuit.

26 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Simply write this string into a tex-file or, alternatively, pipe the output directly to, e.g., pdflatex:

python3 my_circuit.py | pdflatex

where my_circuit.py calls this function and prints it to the terminal.

Parameters
• ordered (bool) – flag if the gates should be drawn in the order they were added to the

circuit

• draw_gates_in_parallel (bool) – flag if parallel gates should be drawn parallel (True),
or not (False)

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: Returns True if the CircuitDrawer is the last engine (since it
can print any command).

Parameters cmd (Command) – Command for which to check availability (all Commands can be
printed).

Returns True, unless the next engine cannot handle the Command (if there is a next engine).

Return type availability (bool)

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, print the commands, and then send them on to the
next engine.

Parameters command_list (list<Command>) – List of Commands to print (and potentially
send on to the next engine).

set_qubit_locations(id_to_loc)
Set the qubit lines to use for the qubits explicitly.

To figure out the qubit IDs, simply use the setting draw_id in the settings file. It is located in
“gates”:”AllocateQubitGate”. If draw_id is True, the qubit IDs are drawn in red.

Parameters id_to_loc (dict) – Dictionary mapping qubit ids to qubit line numbers.

Raises RuntimeError – If the mapping has already begun (this function needs be called before
any gates have been received).

class projectq.backends.CircuitDrawerMatplotlib(accept_input=False, default_measure=0)
CircuitDrawerMatplotlib is a compiler engine which using Matplotlib library for drawing quantum circuits.

__init__(accept_input=False, default_measure=0)
Initialize a circuit drawing engine(mpl).

Parameters
• accept_input (bool) – If accept_input is true, the printer queries the user to input mea-

surement results if the CircuitDrawerMPL is the last engine. Otherwise, all measurements
yield the result default_measure (0 or 1).

• default_measure (bool) – Default value to use as measurement results if accept_input
is False and there is no underlying backend to register real measurement results.

3.1. backends 27

projectq Documentation, Release 0.7.2

draw(qubit_labels=None, drawing_order=None, **kwargs)
Generate and returns the plot of the quantum circuit stored so far.

Parameters
• qubit_labels (dict) – label for each wire in the output figure. Keys: qubit IDs, Values:

string to print out as label for that particular qubit wire.

• drawing_order (dict) – position of each qubit in the output graphic. Keys: qubit IDs,
Values: position of qubit on the qubit line in the graphic.

• **kwargs (dict) – additional parameters are used to update the default plot parameters

Returns A tuple containing the matplotlib figure and axes objects

Note: Additional keyword arguments can be passed to this function in order to further customize the figure
output by matplotlib (default value in parentheses):

• fontsize (14): Font size in pt

• column_spacing (.5): Vertical spacing between two neighbouring gates (roughly in inches)

• control_radius (.015): Radius of the circle for controls

• labels_margin (1): Margin between labels and begin of wire (roughly in inches)

• linewidth (1): Width of line

• not_radius (.03): Radius of the circle for X/NOT gates

• gate_offset (.05): Inner margins for gates with a text representation

• mgate_width (.1): Width of the measurement gate

• swap_delta (.02): Half-size of the SWAP gate

• x_offset (.05): Absolute X-offset for drawing within the axes

• wire_height (1): Vertical spacing between two qubit wires (roughly in inches)

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: Returns True if the CircuitDrawerMatplotlib is the last engine
(since it can print any command).

Parameters cmd (Command) – Command for which to check availability (all Commands can be
printed).

Returns True, unless the next engine cannot handle the Command (if there is a next engine).

Return type availability (bool)

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, print the commands, and then send them on to the
next engine.

Parameters command_list (list<Command>) – List of Commands to print (and potentially
send on to the next engine).

28 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

class projectq.backends.ClassicalSimulator

A simple introspective simulator that only permits classical operations.

Allows allocation, deallocation, measuring (no-op), flushing (no-op), controls, NOTs, and any BasicMathGate.
Supports reading/writing directly from/to bits and registers of bits.

__init__()

Initialize a ClassicalSimulator object.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

read_bit(qubit)
Read a bit.

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

Parameters qubit (projectq.types.Qubit) – The bit to read.

Returns 0 if the target bit is off, 1 if it’s on.

Return type int

read_register(qureg)
Read a group of bits as a little-endian integer.

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

Parameters qureg (projectq.types.Qureg) – The group of bits to read, in little-endian order.

Returns Little-endian register value.

Return type int

receive(command_list)
Receive a list of commands.

This implementation simply forwards all commands to the next engine.

write_bit(qubit, value)
Resets/sets a bit to the given value.

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

Parameters
• qubit (projectq.types.Qubit) – The bit to write.

• value (bool|int) – Writes 1 if this value is truthy, else 0.

3.1. backends 29

projectq Documentation, Release 0.7.2

write_register(qureg, value)
Set a group of bits to store a little-endian integer value.

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

Parameters
• qureg (projectq.types.Qureg) – The bits to write, in little-endian order.

• value (int) – The integer value to store. Must fit in the register.

class projectq.backends.CommandPrinter(accept_input=True, default_measure=False, in_place=False)
Compiler engine that prints command to the standard output.

CommandPrinter is a compiler engine which prints commands to stdout prior to sending them on to the next
compiler engine.

__init__(accept_input=True, default_measure=False, in_place=False)
Initialize a CommandPrinter.

Parameters
• accept_input (bool) – If accept_input is true, the printer queries the user to input mea-

surement results if the CommandPrinter is the last engine. Otherwise, all measurements
yield default_measure.

• default_measure (bool) – Default measurement result (if accept_input is False).

• in_place (bool) – If in_place is true, all output is written on the same line of the terminal.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: Returns True if the CommandPrinter is the last engine (since
it can print any command).

Parameters cmd (Command) – Command of which to check availability (all Commands can be
printed).

Returns True, unless the next engine cannot handle the Command (if there is a next engine).

Return type availability (bool)

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, print the commands, and then send them on to the
next engine.

Parameters command_list (list<Command>) – List of Commands to print (and potentially
send on to the next engine).

exception projectq.backends.DeviceNotHandledError

Exception raised if a selected device cannot handle the circuit or is not supported by ProjectQ.

exception projectq.backends.DeviceOfflineError

Raised when a device is required but is currently offline.

30 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

exception projectq.backends.DeviceTooSmall

Raised when a device does not have enough qubits for a desired job.

class projectq.backends.IBMBackend(use_hardware=False, num_runs=1024, verbose=False, token='',
device='ibmq_essex', num_retries=3000, interval=1,
retrieve_execution=None)

Define the compiler engine class that handles interactions with the IBM API.

The IBM Backend class, which stores the circuit, transforms it to JSON, and sends the circuit through the IBM
API.

__init__(use_hardware=False, num_runs=1024, verbose=False, token='', device='ibmq_essex',
num_retries=3000, interval=1, retrieve_execution=None)

Initialize the Backend object.

Parameters
• use_hardware (bool) – If True, the code is run on the IBM quantum chip (instead of

using the IBM simulator)

• num_runs (int) – Number of runs to collect statistics. (default is 1024)

• verbose (bool) – If True, statistics are printed, in addition to the measurement result being
registered (at the end of the circuit).

• token (str) – IBM quantum experience user password.

• device (str) – name of the IBM device to use. ibmq_essex By default

• num_retries (int) – Number of times to retry to obtain results from the IBM API. (de-
fault is 3000)

• interval (float, int) – Number of seconds between successive attempts to obtain
results from the IBM API. (default is 1)

• retrieve_execution (int) – Job ID to retrieve instead of re- running the circuit (e.g.,
if previous run timed out).

get_probabilities(qureg)
Return the probability of the outcome bit_string when measuring the quantum register qureg.

Return the list of basis states with corresponding probabilities. If input qureg is a subset of the register used
for the experiment, then returns the projected probabilities over the other states.

The measured bits are ordered according to the supplied quantum register, i.e., the left-most bit in the
state-string corresponds to the first qubit in the supplied quantum register.

Warning: Only call this function after the circuit has been executed!

Parameters qureg (list<Qubit>) – Quantum register determining the order of the qubits.

Returns Dictionary mapping n-bit strings to probabilities.

Return type probability_dict (dict)

Raises RuntimeError – If no data is available (i.e., if the circuit has not been executed). Or if a
qubit was supplied which was not present in the circuit (might have gotten optimized away).

3.1. backends 31

projectq Documentation, Release 0.7.2

get_qasm()

Return the QASM representation of the circuit sent to the backend.

Should be called AFTER calling the ibm device.

is_available(cmd)
Return true if the command can be executed.

The IBM quantum chip can only do U1,U2,U3,barriers, and CX / CNOT. Conversion implemented for
Rotation gates and H gates.

Parameters cmd (Command) – Command for which to check availability

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it until completion. Upon flush, send the data to the
IBM QE API.

Parameters command_list – List of commands to execute

class projectq.backends.IonQBackend(use_hardware=False, num_runs=100, verbose=False, token=None,
device='ionq_simulator', num_retries=3000, interval=1,
retrieve_execution=None)

Backend for building circuits and submitting them to the IonQ API.

__init__(use_hardware=False, num_runs=100, verbose=False, token=None, device='ionq_simulator',
num_retries=3000, interval=1, retrieve_execution=None)

Initialize an IonQBackend object.

Parameters
• use_hardware (bool, optional) – Whether or not to use real IonQ hardware or just a

simulator. If False, the ionq_simulator is used regardless of the value of device. Defaults
to False.

• num_runs (int, optional) – Number of times to run circuits. Defaults to 100.

• verbose (bool, optional) – If True, print statistics after job results have been collected.
Defaults to False.

• token (str, optional) – An IonQ API token. Defaults to None.

• device (str, optional) – Device to run jobs on. Supported devices are 'ionq_qpu'
or 'ionq_simulator'. Defaults to 'ionq_simulator'.

• num_retries (int, optional) – Number of times to retry fetching a job after it has
been submitted. Defaults to 3000.

• interval (int, optional) – Number of seconds to wait inbetween result fetch retries.
Defaults to 1.

• retrieve_execution (str, optional) – An IonQ API Job ID. If provided, a job with
this ID will be fetched. Defaults to None.

get_probabilities(qureg)
Given the provided qubit register, determine the probability of each possible outcome.

Note: This method should only be called after a circuit has been run and its results are available.

32 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Parameters qureg (Qureg) – A ProjectQ Qureg object.

Returns A dict mapping of states -> probability.

Return type dict

get_probability(state, qureg)
Shortcut to get a specific state’s probability.

Parameters
• state (str) – A state in bit-string format.

• qureg (Qureg) – A ProjectQ Qureg object.

Returns The probability for the provided state.

Return type float

is_available(cmd)
Test if this backend is available to process the provided command.

Parameters cmd (Command) – A command to process.

Returns If this backend can process the command.

Return type bool

receive(command_list)
Receive a command list from the ProjectQ engine pipeline.

If a given command is a “flush” operation, the pending circuit will be submitted to IonQ’s API for process-
ing.

Parameters command_list (list[Command]) – A list of ProjectQ Command objects.

class projectq.backends.ResourceCounter

ResourceCounter is a compiler engine which counts the number of gates and max. number of active qubits.

gate_counts

Dictionary of gate counts. The keys are tuples of the form (cmd.gate, ctrl_cnt), where ctrl_cnt is the number
of control qubits.

Type dict

gate_class_counts

Dictionary of gate class counts. The keys are tuples of the form (cmd.gate.__class__, ctrl_cnt), where
ctrl_cnt is the number of control qubits.

Type dict

max_width

Maximal width (=max. number of active qubits at any given point).

Type int

Properties: depth_of_dag (int): It is the longest path in the directed acyclic graph (DAG) of the program.

__init__()

Initialize a resource counter engine.

Sets all statistics to zero.

3.1. backends 33

projectq Documentation, Release 0.7.2

property depth_of_dag

Return the depth of the DAG.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: Returns True if the ResourceCounter is the last engine (since
it can count any command).

Parameters cmd (Command) – Command for which to check availability (all Commands can be
counted).

Returns True, unless the next engine cannot handle the Command (if there is a next engine).

Return type availability (bool)

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, increases the counters of the received commands,
and then send them on to the next engine.

Parameters command_list (list<Command>) – List of commands to receive (and count).

class projectq.backends.Simulator(gate_fusion=False, rnd_seed=None)
Simulator is a compiler engine which simulates a quantum computer using C++-based kernels.

OpenMP is enabled and the number of threads can be controlled using the OMP_NUM_THREADS environment
variable, i.e.

export OMP_NUM_THREADS=4 # use 4 threads
export OMP_PROC_BIND=spread # bind threads to processors by spreading

__init__(gate_fusion=False, rnd_seed=None)
Construct the C++/Python-simulator object and initialize it with a random seed.

Parameters
• gate_fusion (bool) – If True, gates are cached and only executed once a certain gate-size

has been reached (only has an effect for the c++ simulator).

• rnd_seed (int) – Random seed (uses random.randint(0, 4294967295) by default).

Example of gate_fusion: Instead of applying a Hadamard gate to 5 qubits, the simulator calculates the
kronecker product of the 1-qubit gate matrices and then applies one 5-qubit gate. This increases operational
intensity and keeps the simulator from having to iterate through the state vector multiple times. Depending
on the system (and, especially, number of threads), this may or may not be beneficial.

Note: If the C++ Simulator extension was not built or cannot be found, the Simulator defaults to a Python
implementation of the kernels. While this is much slower, it is still good enough to run basic quantum
algorithms.

If you need to run large simulations, check out the tutorial in the docs which gives futher hints on how to
build the C++ extension.

apply_qubit_operator(qubit_operator, qureg)
Apply a (possibly non-unitary) qubit_operator to the current wave function represented by a quantum reg-
ister.

Parameters

34 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

• qubit_operator (projectq.ops.QubitOperator) – Operator to apply.

• qureg (list[Qubit],Qureg) – Quantum bits to which to apply the operator.

Raises Exception – If qubit_operator acts on more qubits than present in the qureg argument.

Warning: This function allows applying non-unitary gates and it will not re-normalize the wave func-
tion! It is for numerical experiments only and should not be used for other purposes.

Note: Make sure all previous commands (especially allocations) have passed through the compilation
chain (call main_engine.flush() to make sure).

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

cheat()

Access the ordering of the qubits and the state vector directly.

This is a cheat function which enables, e.g., more efficient evaluation of expectation values and debugging.

Returns A tuple where the first entry is a dictionary mapping qubit indices to bit-locations and
the second entry is the corresponding state vector.

Note: Make sure all previous commands have passed through the compilation chain (call
main_engine.flush() to make sure).

Note: If there is a mapper present in the compiler, this function DOES NOT automatically convert from
logical qubits to mapped qubits.

collapse_wavefunction(qureg, values)
Collapse a quantum register onto a classical basis state.

Parameters
• qureg (Qureg|list[Qubit]) – Qubits to collapse.

• values (list[bool|int]|string[0|1]) – Measurement outcome for each of the
qubits in qureg.

Raises RuntimeError – If an outcome has probability (approximately) 0 or if unknown qubits
are provided (see note).

Note: Make sure all previous commands have passed through the compilation chain (call
main_engine.flush() to make sure).

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

3.1. backends 35

projectq Documentation, Release 0.7.2

get_amplitude(bit_string, qureg)
Return the probability amplitude of the supplied bit_string.

The ordering is given by the quantum register qureg, which must contain all allocated qubits.

Parameters
• bit_string (list[bool|int]|string[0|1]) – Computational basis state

• qureg (Qureg|list[Qubit]) – Quantum register determining the ordering. Must con-
tain all allocated qubits.

Returns Probability amplitude of the provided bit string.

Note: Make sure all previous commands (especially allocations) have passed through the compilation
chain (call main_engine.flush() to make sure).

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

get_expectation_value(qubit_operator, qureg)
Return the expectation value of a qubit operator.

Get the expectation value of qubit_operator w.r.t. the current wave function represented by the supplied
quantum register.

Parameters
• qubit_operator (projectq.ops.QubitOperator) – Operator to measure.

• qureg (list[Qubit],Qureg) – Quantum bits to measure.

Returns Expectation value

Note: Make sure all previous commands (especially allocations) have passed through the compilation
chain (call main_engine.flush() to make sure).

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

Raises Exception – If qubit_operator acts on more qubits than present in the qureg argument.

get_probability(bit_string, qureg)
Return the probability of the outcome bit_string when measuring the quantum register qureg.

Parameters
• bit_string (list[bool|int]|string[0|1]) – Measurement outcome.

• qureg (Qureg|list[Qubit]) – Quantum register.

Returns Probability of measuring the provided bit string.

36 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Note: Make sure all previous commands (especially allocations) have passed through the compilation
chain (call main_engine.flush() to make sure).

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: The simulator can deal with all arbitrarily-controlled gates
which provide a gate-matrix (via gate.matrix) and acts on 5 or less qubits (not counting the control qubits).

Parameters cmd (Command) – Command for which to check availability (single- qubit gate, ar-
bitrary controls)

Returns True if it can be simulated and False otherwise.

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine and handle them (simulate them classically) prior to
sending them on to the next engine.

Parameters command_list (list<Command>) – List of commands to execute on the simulator.

set_wavefunction(wavefunction, qureg)
Set the wavefunction and the qubit ordering of the simulator.

The simulator will adopt the ordering of qureg (instead of reordering the wavefunction).

Parameters
• wavefunction (list[complex]) – Array of complex amplitudes describing the wave-

function (must be normalized).

• qureg (Qureg|list[Qubit]) – Quantum register determining the ordering. Must con-
tain all allocated qubits.

Note: Make sure all previous commands (especially allocations) have passed through the compilation
chain (call main_engine.flush() to make sure).

Note: If there is a mapper present in the compiler, this function automatically converts from logical qubits
to mapped qubits for the qureg argument.

class projectq.backends.UnitarySimulator

Simulator engine aimed at calculating the unitary transformation that represents the current quantum circuit.

unitary

Current unitary representing the quantum circuit being processed so far.

Type np.ndarray

3.1. backends 37

projectq Documentation, Release 0.7.2

history

List of previous quantum circuit unitaries.

Type list<np.ndarray>

Note: The current implementation of this backend resets the unitary after the first gate that is neither a qubit
deallocation nor a measurement occurs after one of those two aforementioned gates.

The old unitary call be accessed at anytime after such a situation occurs via the history property.

eng = MainEngine(backend=UnitarySimulator(), engine_list=[])
qureg = eng.allocate_qureg(3)
All(X) | qureg

eng.flush()
All(Measure) | qureg
eng.deallocate_qubit(qureg[1])

X | qureg[0] # WARNING: appending gate after measurements or deallocations resets␣
→˓the unitary

__init__()

Initialize a UnitarySimulator object.

property history

Access all previous unitary matrices.

The current unitary matrix is appended to this list once a gate is received after either a measurement or a
qubit deallocation has occurred.

Returns A list where the elements are all previous unitary matrices representing the circuit, sep-
arated by measurement/deallocate gates.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of is_available: The unitary simulator can deal with all arbitrarily-controlled
gates which provide a gate-matrix (via gate.matrix).

Parameters cmd (Command) – Command for which to check availability (single- qubit gate, ar-
bitrary controls)

Returns True if it can be simulated and False otherwise.

measure_qubits(ids)
Measure the qubits with IDs ids and return a list of measurement outcomes (True/False).

Parameters ids (list<int>) – List of qubit IDs to measure.

Returns List of measurement results (containing either True or False).

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine and handle them:
• update the unitary of the quantum circuit

• update the internal quantum state if a measurement or a qubit deallocation occurs

38 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

prior to sending them on to the next engine.

Parameters command_list (list<Command>) – List of commands to execute on the simulator.

property unitary

Access the last unitary matrix directly.

Returns A numpy array which is the unitary matrix of the circuit.

3.2 cengines

The ProjectQ compiler engines package.

projectq.cengines._basicmapper The parent class from which all mappers should be de-
rived.

projectq.cengines._basics Module containing the basic definition of a compiler en-
gine.

projectq.cengines._cmdmodifier A CommandModifier engine that can be used to apply a
user-defined transformation to all incoming commands.

projectq.cengines._ibm5qubitmapper Contains a compiler engine to map to the 5-qubit IBM
chip.

projectq.cengines._linearmapper Mapper for a quantum circuit to a linear chain of qubits.
projectq.cengines._main The main engine of every compiler engine pipeline,

called MainEngine.
projectq.cengines._manualmapper A compiler engine to add mapping information.
projectq.cengines._optimize A local optimizer engine.
projectq.cengines._replacer

projectq.cengines._swapandcnotflipper A compiler engine which flips the directionality of
CNOTs according to the given connectivity graph.

projectq.cengines._tagremover The TagRemover compiler engine.
projectq.cengines._testengine TestEngine and DummyEngine.
projectq.cengines._twodmapper Mapper for a quantum circuit to a 2D square grid.
projectq.cengines.AutoReplacer(...[, ...]) A compiler engine to automatically replace certain com-

mands.
projectq.cengines.BasicEngine() Basic compiler engine: All compiler engines are derived

from this class.
projectq.cengines.BasicMapperEngine() Parent class for all Mappers.
projectq.cengines.
CommandModifier(cmd_mod_fun)

Compiler engine applying a user-defined transformation
to all incoming commands.

projectq.cengines.CompareEngine() Command list comparison compiler engine for testing
purposes.

projectq.cengines.DecompositionRule(...[, ...]) A rule for breaking down specific gates into sequences
of simpler gates.

projectq.cengines.DecompositionRuleSet([...]) A collection of indexed decomposition rules.
projectq.cengines.
DummyEngine([save_commands])

DummyEngine used for testing.

projectq.cengines.ForwarderEngine(engine[,
...])

A ForwarderEngine is a trivial engine which forwards
all commands to the next engine.

projectq.cengines.GridMapper(num_rows, ...) Mapper to a 2-D grid graph.
projectq.cengines.
IBM5QubitMapper([connections])

Mapper for the 5-qubit IBM backend.

continues on next page

3.2. cengines 39

projectq Documentation, Release 0.7.2

Table 1 – continued from previous page
projectq.cengines.
InstructionFilter(filterfun)

A compiler engine that implements a user-defined
is_available() method.

projectq.cengines.
LastEngineException(engine)

Exception thrown when the last engine tries to access the
next one.

projectq.cengines.LinearMapper(num_qubits[,
...])

Map a quantum circuit to a linear chain of nearest neigh-
bour interactions.

projectq.cengines.LocalOptimizer([cache_size,
m])

Circuit optimization compiler engine.

projectq.cengines.MainEngine([backend, ...]) The MainEngine class provides all functionality of the
main compiler engine.

projectq.cengines.ManualMapper([map_fun]) Manual Mapper which adds QubitPlacementTags to Al-
locate gate commands according to a user-specified
mapping.

projectq.cengines.NotYetMeasuredError Exception raised when trying to access the measurement
value of a qubit that has not yet been measured.

projectq.cengines.return_swap_depth (swaps) Return the circuit depth to execute these swaps.
projectq.cengines.SwapAndCNOTFlipper(...) Flip CNOTs and translates Swaps to CNOTs where nec-

essary.
projectq.cengines.TagRemover([tags]) Compiler engine that remove temporary command tags.
projectq.cengines.UnsupportedEngineError Exception raised when a non-supported compiler engine

is encountered.

3.2.1 Submodules

_basicmapper

The parent class from which all mappers should be derived.

There is only one engine currently allowed to be derived from BasicMapperEngine. This allows the simulator to
automatically translate logical qubit ids to mapped ids.

class projectq.cengines._basicmapper.BasicMapperEngine

Parent class for all Mappers.

self.current_mapping

Keys are the logical qubit ids and values are the mapped qubit ids.

Type dict

property current_mapping

Access the current mapping.

receive(command_list)
Receive a list of commands.

This implementation simply forwards all commands to the next compiler engine while adjusting the qubit
IDs of measurement gates.

40 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

_basics

Module containing the basic definition of a compiler engine.

class projectq.cengines._basics.BasicEngine

Basic compiler engine: All compiler engines are derived from this class.

It provides basic functionality such as qubit allocation/deallocation and functions that provide information about
the engine’s position (e.g., next engine).

This information is provided by the MainEngine, which initializes all further engines.

next_engine

Next compiler engine (or the back-end).

Type BasicEngine

main_engine

Reference to the main compiler engine.

Type MainEngine

is_last_engine

True for the last engine, which is the back-end.

Type bool

allocate_qubit(dirty=False)
Return a new qubit as a list containing 1 qubit object (quantum register of size 1).

Allocates a new qubit by getting a (new) qubit id from the MainEngine, creating the qubit object, and then
sending an AllocateQubit command down the pipeline. If dirty=True, the fresh qubit can be replaced by a
pre-allocated one (in an unknown, dirty, initial state). Dirty qubits must be returned to their initial states
before they are deallocated / freed.

All allocated qubits are added to the MainEngine’s set of active qubits as weak references. This allows
proper clean-up at the end of the Python program (using atexit), deallocating all qubits which are still alive.
Qubit ids of dirty qubits are registered in MainEngine’s dirty_qubits set.

Parameters dirty (bool) – If True, indicates that the allocated qubit may be dirty (i.e., in an
arbitrary initial state).

Returns Qureg of length 1, where the first entry is the allocated qubit.

allocate_qureg(n_qubits)
Allocate n qubits and return them as a quantum register, which is a list of qubit objects.

Parameters n (int) – Number of qubits to allocate

Returns Qureg of length n, a list of n newly allocated qubits.

deallocate_qubit(qubit)
Deallocate a qubit (and sends the deallocation command down the pipeline).

If the qubit was allocated as a dirty qubit, add DirtyQubitTag() to Deallocate command.

Parameters qubit (BasicQubit) – Qubit to deallocate.

Raises ValueError – Qubit already deallocated. Caller likely has a bug.

3.2. cengines 41

projectq Documentation, Release 0.7.2

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Default implementation of is_available: Ask the next engine whether a command is available, i.e., whether
it can be executed by the next engine(s).

Parameters cmd (Command) – Command for which to check availability.

Returns True if the command can be executed.

Raises LastEngineException – If is_last_engine is True but is_available is not implemented.

is_meta_tag_supported(meta_tag)
Check if there is a compiler engine handling the meta tag.

Parameters
• engine – First engine to check (then iteratively calls getNextEngine)

• meta_tag – Meta tag class for which to check support

Returns True if one of the further compiler engines is a meta tag handler, i.e., en-
gine.is_meta_tag_handler(meta_tag) returns True.

Return type supported (bool)

send(command_list)
Forward the list of commands to the next engine in the pipeline.

class projectq.cengines._basics.ForwarderEngine(engine, cmd_mod_fun=None)
A ForwarderEngine is a trivial engine which forwards all commands to the next engine.

It is mainly used as a substitute for the MainEngine at lower levels such that meta operations still work (e.g., with
Compute).

receive(command_list)
Forward all commands to the next engine.

exception projectq.cengines._basics.LastEngineException(engine)
Exception thrown when the last engine tries to access the next one. (Next engine does not exist).

The default implementation of isAvailable simply asks the next engine whether the command is available. An
engine which legally may be the last engine, this behavior needs to be adapted (see BasicEngine.isAvailable).

_cmdmodifier

A CommandModifier engine that can be used to apply a user-defined transformation to all incoming commands.

A CommandModifier engine can be used to, e.g., modify the tags of all commands which pass by (see the AutoReplacer
for an example).

class projectq.cengines._cmdmodifier.CommandModifier(cmd_mod_fun)
Compiler engine applying a user-defined transformation to all incoming commands.

CommandModifier is a compiler engine which applies a function to all incoming commands, sending on the
resulting command instead of the original one.

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, modify all commands, and send them on to the next
engine.

42 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Parameters command_list (list<Command>) – List of commands to receive and then (after
modification) send on.

_ibm5qubitmapper

Contains a compiler engine to map to the 5-qubit IBM chip.

class projectq.cengines._ibm5qubitmapper.IBM5QubitMapper(connections=None)
Mapper for the 5-qubit IBM backend.

Maps a given circuit to the IBM Quantum Experience chip.

Note: The mapper has to be run once on the entire circuit.

Warning: If the provided circuit cannot be mapped to the hardware layout without performing Swaps, the
mapping procedure raises an Exception.

is_available(cmd)
Check if the IBM backend can perform the Command cmd and return True if so.

Parameters cmd (Command) – The command to check

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it until completion.

Parameters command_list (list of Command objects) – list of commands to receive.

Raises Exception – If mapping the CNOT gates to 1 qubit would require Swaps. The current
version only supports remapping of CNOT gates without performing any Swaps due to the
large costs associated with Swapping given the CNOT constraints.

_linearmapper

Mapper for a quantum circuit to a linear chain of qubits.

Input: Quantum circuit with 1 and 2 qubit gates on n qubits. Gates are assumed to be applied in parallel if they act
on disjoint qubit(s) and any pair of qubits can perform a 2 qubit gate (all-to-all connectivity)

Output: Quantum circuit in which qubits are placed in 1-D chain in which only nearest neighbour qubits can perform a 2
qubit gate. The mapper uses Swap gates in order to move qubits next to each other.

class projectq.cengines._linearmapper.LinearMapper(num_qubits, cyclic=False, storage=1000)
Map a quantum circuit to a linear chain of nearest neighbour interactions.

Maps a quantum circuit to a linear chain of qubits with nearest neighbour interactions using Swap gates. It
supports open or cyclic boundary conditions.

current_mapping

Stores the mapping: key is logical qubit id, value is mapped qubit id from 0,. . . ,self.num_qubits

3.2. cengines 43

projectq Documentation, Release 0.7.2

cyclic

If chain is cyclic or not

Type Bool

storage

Number of gate it caches before mapping.

Type int

num_mappings

Number of times the mapper changed the mapping

Type int

depth_of_swaps

Key are circuit depth of swaps, value is the number of such mappings which have been applied

Type dict

num_of_swaps_per_mapping

Key are the number of swaps per mapping, value is the number of such mappings which have been applied

Type dict

Note:
1) Gates are cached and only mapped from time to time. A FastForwarding gate doesn’t empty the cache, only

a FlushGate does.

2) Only 1 and two qubit gates allowed.

3) Does not optimize for dirty qubits.

is_available(cmd)
Only allows 1 or two qubit gates.

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it until we do a mapping (FlushGate or Cache of
stored commands is full).

Parameters command_list (list of Command objects) – list of commands to receive.

static return_new_mapping(num_qubits, cyclic, currently_allocated_ids, stored_commands,
current_mapping)

Build a mapping of qubits to a linear chain.

It goes through stored_commands and tries to find a mapping to apply these gates on a first come first
served basis. More compilicated scheme could try to optimize to apply as many gates as possible between
the Swaps.

Parameters
• num_qubits (int) – Total number of qubits in the linear chain

• cyclic (bool) – If linear chain is a cycle.

• currently_allocated_ids (set of int) – Logical qubit ids for which the Allocate
gate has already been processed and sent to the next engine but which are not yet deallocated
and hence need to be included in the new mapping.

44 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

• stored_commands (list of Command objects) – Future commands which should be
applied next.

• current_mapping – A current mapping as a dict. key is logical qubit id, value is place-
ment id. If there are different possible maps, this current mapping is used to minimize the
swaps to go to the new mapping by a heuristic.

Returns: A new mapping as a dict. key is logical qubit id, value is placement id

projectq.cengines._linearmapper.return_swap_depth(swaps)
Return the circuit depth to execute these swaps.

Parameters swaps (list of tuples) – Each tuple contains two integers representing the two IDs
of the qubits involved in the Swap operation

Returns Circuit depth to execute these swaps.

_main

The main engine of every compiler engine pipeline, called MainEngine.

class projectq.cengines._main.MainEngine(backend=None, engine_list=None, verbose=False)
The MainEngine class provides all functionality of the main compiler engine.

It initializes all further compiler engines (calls, e.g., .next_engine=. . .) and keeps track of measurement results
and active qubits (and their IDs).

next_engine

Next compiler engine (or the back-end).

Type BasicEngine

main_engine

Self.

Type MainEngine

active_qubits

WeakSet containing all active qubits

Type WeakSet

dirty_qubits

Containing all dirty qubit ids

Type Set

backend

Access the back-end.

Type BasicEngine

mapper

Access to the mapper if there is one.

Type BasicMapperEngine

3.2. cengines 45

projectq Documentation, Release 0.7.2

n_engines

Current number of compiler engines in the engine list

Type int

n_engines_max

Maximum number of compiler engines allowed in the engine list. Defaults to 100.

Type int

flush(deallocate_qubits=False)
Flush the entire circuit down the pipeline, clearing potential buffers (of, e.g., optimizers).

Parameters deallocate_qubits (bool) – If True, deallocates all qubits that are still alive
(invalidating references to them by setting their id to -1).

get_measurement_result(qubit)
Return the classical value of a measured qubit, given that an engine registered this result previously.

See also setMeasurementResult.

Parameters qubit (BasicQubit) – Qubit of which to get the measurement result.

Example

from projectq.ops import H, Measure
from projectq import MainEngine
eng = MainEngine()
qubit = eng.allocate_qubit() # quantum register of size 1
H | qubit
Measure | qubit
eng.get_measurement_result(qubit[0]) == int(qubit)

get_new_qubit_id()

Return a unique qubit id to be used for the next qubit allocation.

Returns New unique qubit id.

Return type new_qubit_id (int)

receive(command_list)
Forward the list of commands to the first engine.

Parameters command_list (list<Command>) – List of commands to receive (and then send
on)

send(command_list)
Forward the list of commands to the next engine in the pipeline.

It also shortens exception stack traces if self.verbose is False.

set_measurement_result(qubit, value)
Register a measurement result.

The engine being responsible for measurement results needs to register these results with the master engine
such that they are available when the user calls an int() or bool() conversion operator on a measured qubit.

Parameters
• qubit (BasicQubit) – Qubit for which to register the measurement result.

46 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

• value (bool) – Boolean value of the measurement outcome (True / False = 1 / 0 respec-
tively).

exception projectq.cengines._main.NotYetMeasuredError

Exception raised when trying to access the measurement value of a qubit that has not yet been measured.

exception projectq.cengines._main.UnsupportedEngineError

Exception raised when a non-supported compiler engine is encountered.

_manualmapper

A compiler engine to add mapping information.

class projectq.cengines._manualmapper.ManualMapper(map_fun=<function
ManualMapper.<lambda>>)

Manual Mapper which adds QubitPlacementTags to Allocate gate commands according to a user-specified map-
ping.

map

The function which maps a given qubit id to its location. It gets set when initializing the mapper.

Type function

receive(command_list)
Receives a command list and passes it to the next engine, adding qubit placement tags to allocate gates.

Parameters command_list (list of Command objects) – list of commands to receive.

_optimize

A local optimizer engine.

class projectq.cengines._optimize.LocalOptimizer(cache_size=5, m=None)
Circuit optimization compiler engine.

LocalOptimizer is a compiler engine which optimizes locally (merging rotations, cancelling gates with their
inverse) in a local window of user- defined size.

It stores all commands in a dict of lists, where each qubit has its own gate pipeline. After adding a gate, it tries
to merge / cancel successive gates using the get_merged and get_inverse functions of the gate (if available). For
examples, see BasicRotationGate. Once a list corresponding to a qubit contains >=m gates, the pipeline is sent
on to the next engine.

receive(command_list)
Receive a list of commands.

Receive commands from the previous engine and cache them. If a flush gate arrives, the entire buffer is
sent on.

3.2. cengines 47

projectq Documentation, Release 0.7.2

_replacer

_swapandcnotflipper

A compiler engine which flips the directionality of CNOTs according to the given connectivity graph.

It also translates Swap gates to CNOTs if necessary.

class projectq.cengines._swapandcnotflipper.SwapAndCNOTFlipper(connectivity)
Flip CNOTs and translates Swaps to CNOTs where necessary.

Warning: This engine assumes that CNOT and Hadamard gates are supported by the following engines.

Warning: This engine cannot be used as a backend.

is_available(cmd)
Check if the IBM backend can perform the Command cmd and return True if so.

Parameters cmd (Command) – The command to check

receive(command_list)
Receive a list of commands.

Receive a command list and if the command is a CNOT gate, it flips it using Hadamard gates if necessary;
if it is a Swap gate, it decomposes it using 3 CNOTs. All other gates are simply sent to the next engine.

Parameters command_list (list of Command objects) – list of commands to receive.

_tagremover

The TagRemover compiler engine.

A TagRemover engine removes temporary command tags (such as Compute/Uncompute), thus enabling optimization
across meta statements (loops after unrolling, compute/uncompute, . . .)

class projectq.cengines._tagremover.TagRemover(tags=None)
Compiler engine that remove temporary command tags.

TagRemover is a compiler engine which removes temporary command tags (see the tag classes such as LoopTag
in projectq.meta._loop).

Removing tags is important (after having handled them if necessary) in order to enable optimizations across
meta-function boundaries (compute/ action/uncompute or loops after unrolling)

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, remove all tags which are an instance of at least one
of the meta tags provided in the constructor, and then send them on to the next compiler engine.

Parameters command_list (list<Command>) – List of commands to receive and then (after
removing tags) send on.

48 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

_testengine

TestEngine and DummyEngine.

class projectq.cengines._testengine.CompareEngine

Command list comparison compiler engine for testing purposes.

CompareEngine is an engine which saves all commands. It is only intended for testing purposes. Two Compa-
reEngine backends can be compared and return True if they contain the same commmands.

cache_cmd(cmd)
Cache a command.

is_available(cmd)
All commands are accepted by this compiler engine.

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it inside the cache before sending it to the next
compiler engine.

Parameters command_list (list of Command objects) – list of commands to receive.

class projectq.cengines._testengine.DummyEngine(save_commands=False)
DummyEngine used for testing.

The DummyEngine forwards all commands directly to next engine. If self.is_last_engine == True it just discards
all gates. By setting save_commands == True all commands get saved as a list in self.received_commands.
Elements are appended to this list so they are ordered according to when they are received.

is_available(cmd)
All commands are accepted by this compiler engine.

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it internally if requested before sending it to the
next compiler engine.

Parameters command_list (list of Command objects) – list of commands to receive.

_twodmapper

Mapper for a quantum circuit to a 2D square grid.

Input: Quantum circuit with 1 and 2 qubit gates on n qubits. Gates are assumed to be applied in parallel if they act
on disjoint qubit(s) and any pair of qubits can perform a 2 qubit gate (all-to-all connectivity)

Output: Quantum circuit in which qubits are placed in 2-D square grid in which only nearest neighbour qubits can
perform a 2 qubit gate. The mapper uses Swap gates in order to move qubits next to each other.

class projectq.cengines._twodmapper.GridMapper(num_rows, num_columns,
mapped_ids_to_backend_ids=None, storage=1000,
optimization_function=<function return_swap_depth>,
num_optimization_steps=50)

Mapper to a 2-D grid graph.

Mapped qubits on the grid are numbered in row-major order. E.g. for 3 rows and 2 columns:

3.2. cengines 49

projectq Documentation, Release 0.7.2

0 - 1 | | 2 - 3 | | 4 - 5

The numbers are the mapped qubit ids. The backend might number the qubits on the grid differently (e.g. not
row-major), we call these backend qubit ids. If the backend qubit ids are not row-major, one can pass a dictionary
translating from our row-major mapped ids to these backend ids.

Note: The algorithm sorts twice inside each column and once inside each row.

current_mapping

Stores the mapping: key is logical qubit id, value is backend qubit id.

storage

Number of gate it caches before mapping.

Type int

num_rows

Number of rows in the grid

Type int

num_columns

Number of columns in the grid

Type int

num_qubits

num_rows x num_columns = number of qubits

Type int

num_mappings

Number of times the mapper changed the mapping

Type int

depth_of_swaps

Key are circuit depth of swaps, value is the number of such mappings which have been applied

Type dict

num_of_swaps_per_mapping

Key are the number of swaps per mapping, value is the number of such mappings which have been applied

Type dict

property current_mapping

Access to the mapping stored inside the mapper engine.

is_available(cmd)
Only allow 1 or two qubit gates.

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it until we do a mapping (FlushGate or Cache of
stored commands is full).

Parameters command_list (list of Command objects) – list of commands to receive.

50 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

return_swaps(old_mapping, new_mapping, permutation=None)
Return the swap operation to change mapping.

Parameters
• old_mapping – dict: keys are logical ids and values are mapped qubit ids

• new_mapping – dict: keys are logical ids and values are mapped qubit ids

• permutation – list of int from 0, 1, . . . , self.num_rows-1. It is used to permute the found
perfect matchings. Default is None which keeps the original order.

Returns List of tuples. Each tuple is a swap operation which needs to be applied. Tuple contains
the two mapped qubit ids for the Swap.

3.2.2 Module contents

ProjectQ module containing all compiler engines.

class projectq.cengines.AutoReplacer(decomposition_rule_se, decomposition_chooser=<function
AutoReplacer.<lambda>>)

A compiler engine to automatically replace certain commands.

The AutoReplacer is a compiler engine which uses engine.is_available in order to determine which commands
need to be replaced/decomposed/compiled further. The loaded setup is used to find decomposition rules appro-
priate for each command (e.g., setups.default).

__init__(decomposition_rule_se, decomposition_chooser=<function AutoReplacer.<lambda>>)
Initialize an AutoReplacer.

Parameters decomposition_chooser (function) – A function which, given the Command
to decompose and a list of potential Decomposition objects, determines (and then returns) the
‘best’ decomposition.

The default decomposition chooser simply returns the first list element, i.e., calling

repl = AutoReplacer()

Amounts to

def decomposition_chooser(cmd, decomp_list):
return decomp_list[0]

repl = AutoReplacer(decomposition_chooser)

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous compiler engine and, if necessary, replace/decompose the
gates according to the decomposition rules in the loaded setup.

Parameters command_list (list<Command>) – List of commands to handle.

class projectq.cengines.BasicEngine

Basic compiler engine: All compiler engines are derived from this class.

It provides basic functionality such as qubit allocation/deallocation and functions that provide information about
the engine’s position (e.g., next engine).

This information is provided by the MainEngine, which initializes all further engines.

3.2. cengines 51

projectq Documentation, Release 0.7.2

next_engine

Next compiler engine (or the back-end).

Type BasicEngine

main_engine

Reference to the main compiler engine.

Type MainEngine

is_last_engine

True for the last engine, which is the back-end.

Type bool

__init__()

Initialize the basic engine.

Initializes local variables such as _next_engine, _main_engine, etc. to None.

allocate_qubit(dirty=False)
Return a new qubit as a list containing 1 qubit object (quantum register of size 1).

Allocates a new qubit by getting a (new) qubit id from the MainEngine, creating the qubit object, and then
sending an AllocateQubit command down the pipeline. If dirty=True, the fresh qubit can be replaced by a
pre-allocated one (in an unknown, dirty, initial state). Dirty qubits must be returned to their initial states
before they are deallocated / freed.

All allocated qubits are added to the MainEngine’s set of active qubits as weak references. This allows
proper clean-up at the end of the Python program (using atexit), deallocating all qubits which are still alive.
Qubit ids of dirty qubits are registered in MainEngine’s dirty_qubits set.

Parameters dirty (bool) – If True, indicates that the allocated qubit may be dirty (i.e., in an
arbitrary initial state).

Returns Qureg of length 1, where the first entry is the allocated qubit.

allocate_qureg(n_qubits)
Allocate n qubits and return them as a quantum register, which is a list of qubit objects.

Parameters n (int) – Number of qubits to allocate

Returns Qureg of length n, a list of n newly allocated qubits.

deallocate_qubit(qubit)
Deallocate a qubit (and sends the deallocation command down the pipeline).

If the qubit was allocated as a dirty qubit, add DirtyQubitTag() to Deallocate command.

Parameters qubit (BasicQubit) – Qubit to deallocate.

Raises ValueError – Qubit already deallocated. Caller likely has a bug.

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Default implementation of is_available: Ask the next engine whether a command is available, i.e., whether
it can be executed by the next engine(s).

Parameters cmd (Command) – Command for which to check availability.

Returns True if the command can be executed.

Raises LastEngineException – If is_last_engine is True but is_available is not implemented.

52 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

is_meta_tag_supported(meta_tag)
Check if there is a compiler engine handling the meta tag.

Parameters
• engine – First engine to check (then iteratively calls getNextEngine)

• meta_tag – Meta tag class for which to check support

Returns True if one of the further compiler engines is a meta tag handler, i.e., en-
gine.is_meta_tag_handler(meta_tag) returns True.

Return type supported (bool)

send(command_list)
Forward the list of commands to the next engine in the pipeline.

class projectq.cengines.BasicMapperEngine

Parent class for all Mappers.

self.current_mapping

Keys are the logical qubit ids and values are the mapped qubit ids.

Type dict

__init__()

Initialize a BasicMapperEngine object.

property current_mapping

Access the current mapping.

receive(command_list)
Receive a list of commands.

This implementation simply forwards all commands to the next compiler engine while adjusting the qubit
IDs of measurement gates.

class projectq.cengines.CommandModifier(cmd_mod_fun)
Compiler engine applying a user-defined transformation to all incoming commands.

CommandModifier is a compiler engine which applies a function to all incoming commands, sending on the
resulting command instead of the original one.

__init__(cmd_mod_fun)
Initialize the CommandModifier.

Parameters cmd_mod_fun (function) – Function which, given a command cmd, returns the
command it should send instead.

Example

def cmd_mod_fun(cmd):
cmd.tags += [MyOwnTag()]

compiler_engine = CommandModifier(cmd_mod_fun)
...

3.2. cengines 53

projectq Documentation, Release 0.7.2

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, modify all commands, and send them on to the next
engine.

Parameters command_list (list<Command>) – List of commands to receive and then (after
modification) send on.

class projectq.cengines.CompareEngine

Command list comparison compiler engine for testing purposes.

CompareEngine is an engine which saves all commands. It is only intended for testing purposes. Two Compa-
reEngine backends can be compared and return True if they contain the same commmands.

__init__()

Initialize a CompareEngine object.

cache_cmd(cmd)
Cache a command.

is_available(cmd)
All commands are accepted by this compiler engine.

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it inside the cache before sending it to the next
compiler engine.

Parameters command_list (list of Command objects) – list of commands to receive.

class projectq.cengines.DecompositionRule(gate_class, gate_decomposer, gate_recognizer=<function
DecompositionRule.<lambda>>)

A rule for breaking down specific gates into sequences of simpler gates.

__init__(gate_class, gate_decomposer, gate_recognizer=<function DecompositionRule.<lambda>>)
Initialize a DecompositionRule object.

Parameters
• gate_class (type) – The type of gate that this rule decomposes.

The gate class is redundant information used to make lookups faster when iterating over a
circuit and deciding “which rules apply to this gate?” again and again.

Note that this parameter is a gate type, not a gate instance. You supply gate_class=MyGate
or gate_class=MyGate().__class__, not gate_class=MyGate().

• gate_decomposer (function[projectq.ops.Command]) – Function which, given the
command to decompose, applies a sequence of gates corresponding to the high-level func-
tion of a gate of type gate_class.

• (function[projectq.ops.Command] (gate_recognizer) – boolean): A predicate
that determines if the decomposition applies to the given command (on top of the filter-
ing by gate_class).

For example, a decomposition rule may only to apply rotation gates that rotate by a specific
angle.

If no gate_recognizer is given, the decomposition applies to all gates matching the
gate_class.

54 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

class projectq.cengines.DecompositionRuleSet(rules=None, modules=None)
A collection of indexed decomposition rules.

__init__(rules=None, modules=None)
Initialize a DecompositionRuleSet object.

Parameters
• list[DecompositionRule] (rules) – Initial decomposition rules.

• modules (iterable[ModuleWithDecompositionRuleSet]) – A list of things with an
“all_defined_decomposition_rules” property containing decomposition rules to add to the
rule set.

add_decomposition_rule(rule)
Add a decomposition rule to the rule set.

Parameters rule (DecompositionRuleGate) – The decomposition rule to add.

add_decomposition_rules(rules)
Add some decomposition rules to a decomposition rule set.

class projectq.cengines.DummyEngine(save_commands=False)
DummyEngine used for testing.

The DummyEngine forwards all commands directly to next engine. If self.is_last_engine == True it just discards
all gates. By setting save_commands == True all commands get saved as a list in self.received_commands.
Elements are appended to this list so they are ordered according to when they are received.

__init__(save_commands=False)
Initialize a DummyEngine.

Parameters save_commands (default = False) – If True, commands are saved in
self.received_commands.

is_available(cmd)
All commands are accepted by this compiler engine.

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it internally if requested before sending it to the
next compiler engine.

Parameters command_list (list of Command objects) – list of commands to receive.

class projectq.cengines.ForwarderEngine(engine, cmd_mod_fun=None)
A ForwarderEngine is a trivial engine which forwards all commands to the next engine.

It is mainly used as a substitute for the MainEngine at lower levels such that meta operations still work (e.g., with
Compute).

__init__(engine, cmd_mod_fun=None)
Initialize a ForwarderEngine.

Parameters
• engine (BasicEngine) – Engine to forward all commands to.

• cmd_mod_fun (function) – Function which is called before sending a command. Each
command cmd is replaced by the command it returns when getting called with cmd.

3.2. cengines 55

projectq Documentation, Release 0.7.2

receive(command_list)
Forward all commands to the next engine.

class projectq.cengines.GridMapper(num_rows, num_columns, mapped_ids_to_backend_ids=None,
storage=1000, optimization_function=<function return_swap_depth>,
num_optimization_steps=50)

Mapper to a 2-D grid graph.

Mapped qubits on the grid are numbered in row-major order. E.g. for 3 rows and 2 columns:

0 - 1 | | 2 - 3 | | 4 - 5

The numbers are the mapped qubit ids. The backend might number the qubits on the grid differently (e.g. not
row-major), we call these backend qubit ids. If the backend qubit ids are not row-major, one can pass a dictionary
translating from our row-major mapped ids to these backend ids.

Note: The algorithm sorts twice inside each column and once inside each row.

current_mapping

Stores the mapping: key is logical qubit id, value is backend qubit id.

storage

Number of gate it caches before mapping.

Type int

num_rows

Number of rows in the grid

Type int

num_columns

Number of columns in the grid

Type int

num_qubits

num_rows x num_columns = number of qubits

Type int

num_mappings

Number of times the mapper changed the mapping

Type int

depth_of_swaps

Key are circuit depth of swaps, value is the number of such mappings which have been applied

Type dict

num_of_swaps_per_mapping

Key are the number of swaps per mapping, value is the number of such mappings which have been applied

Type dict

__init__(num_rows, num_columns, mapped_ids_to_backend_ids=None, storage=1000,
optimization_function=<function return_swap_depth>, num_optimization_steps=50)

Initialize a GridMapper compiler engine.

Parameters
• num_rows (int) – Number of rows in the grid

56 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

• num_columns (int) – Number of columns in the grid.

• mapped_ids_to_backend_ids (dict) – Stores a mapping from mapped ids which are
0,. . . ,self.num_qubits-1 in row-major order on the grid to the corresponding qubit ids of
the backend. Key: mapped id. Value: corresponding backend id. Default is None which
means backend ids are identical to mapped ids.

• storage – Number of gates to temporarily store

• optimization_function – Function which takes a list of swaps and returns a cost value.
Mapper chooses a permutation which minimizes this cost. Default optimizes for circuit
depth.

• num_optimization_steps (int) – Number of different permutations to of the matching
to try and minimize the cost.

Raises RuntimeError – if incorrect mapped_ids_to_backend_ids parameter

property current_mapping

Access to the mapping stored inside the mapper engine.

is_available(cmd)
Only allow 1 or two qubit gates.

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it until we do a mapping (FlushGate or Cache of
stored commands is full).

Parameters command_list (list of Command objects) – list of commands to receive.

return_swaps(old_mapping, new_mapping, permutation=None)
Return the swap operation to change mapping.

Parameters
• old_mapping – dict: keys are logical ids and values are mapped qubit ids

• new_mapping – dict: keys are logical ids and values are mapped qubit ids

• permutation – list of int from 0, 1, . . . , self.num_rows-1. It is used to permute the found
perfect matchings. Default is None which keeps the original order.

Returns List of tuples. Each tuple is a swap operation which needs to be applied. Tuple contains
the two mapped qubit ids for the Swap.

class projectq.cengines.IBM5QubitMapper(connections=None)
Mapper for the 5-qubit IBM backend.

Maps a given circuit to the IBM Quantum Experience chip.

Note: The mapper has to be run once on the entire circuit.

Warning: If the provided circuit cannot be mapped to the hardware layout without performing Swaps, the
mapping procedure raises an Exception.

3.2. cengines 57

projectq Documentation, Release 0.7.2

__init__(connections=None)
Initialize an IBM 5-qubit mapper compiler engine.

Resets the mapping.

is_available(cmd)
Check if the IBM backend can perform the Command cmd and return True if so.

Parameters cmd (Command) – The command to check

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it until completion.

Parameters command_list (list of Command objects) – list of commands to receive.

Raises Exception – If mapping the CNOT gates to 1 qubit would require Swaps. The current
version only supports remapping of CNOT gates without performing any Swaps due to the
large costs associated with Swapping given the CNOT constraints.

class projectq.cengines.InstructionFilter(filterfun)
A compiler engine that implements a user-defined is_available() method.

The InstructionFilter is a compiler engine which changes the behavior of is_available according to a filter func-
tion. All commands are passed to this function, which then returns whether this command can be executed (True)
or needs replacement (False).

__init__(filterfun)
Initialize an InstructionFilter object.

Initializer: The provided filterfun returns True for all commands which do not need replacement and False
for commands that do.

Parameters filterfun (function) – Filter function which returns True for available com-
mands, and False otherwise. filterfun will be called as filterfun(self, cmd).

is_available(cmd)
Test whether a Command is supported by a compiler engine.

Specialized implementation of BasicBackend.is_available: Forwards this call to the filter function given to
the constructor.

Parameters cmd (Command) – Command for which to check availability.

receive(command_list)
Receive a list of commands.

This implementation simply forwards all commands to the next engine.

Parameters command_list (list<Command>) – List of commands to receive.

exception projectq.cengines.LastEngineException(engine)
Exception thrown when the last engine tries to access the next one. (Next engine does not exist).

The default implementation of isAvailable simply asks the next engine whether the command is available. An
engine which legally may be the last engine, this behavior needs to be adapted (see BasicEngine.isAvailable).

__init__(engine)
Initialize the exception.

58 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

class projectq.cengines.LinearMapper(num_qubits, cyclic=False, storage=1000)
Map a quantum circuit to a linear chain of nearest neighbour interactions.

Maps a quantum circuit to a linear chain of qubits with nearest neighbour interactions using Swap gates. It
supports open or cyclic boundary conditions.

current_mapping

Stores the mapping: key is logical qubit id, value is mapped qubit id from 0,. . . ,self.num_qubits

cyclic

If chain is cyclic or not

Type Bool

storage

Number of gate it caches before mapping.

Type int

num_mappings

Number of times the mapper changed the mapping

Type int

depth_of_swaps

Key are circuit depth of swaps, value is the number of such mappings which have been applied

Type dict

num_of_swaps_per_mapping

Key are the number of swaps per mapping, value is the number of such mappings which have been applied

Type dict

Note:
1) Gates are cached and only mapped from time to time. A FastForwarding gate doesn’t empty the cache, only

a FlushGate does.

2) Only 1 and two qubit gates allowed.

3) Does not optimize for dirty qubits.

__init__(num_qubits, cyclic=False, storage=1000)
Initialize a LinearMapper compiler engine.

Parameters
• num_qubits (int) – Number of physical qubits in the linear chain

• cyclic (bool) – If 1D chain is a cycle. Default is False.

• storage (int) – Number of gates to temporarily store, default is 1000

is_available(cmd)
Only allows 1 or two qubit gates.

receive(command_list)
Receive a list of commands.

Receive a command list and, for each command, stores it until we do a mapping (FlushGate or Cache of
stored commands is full).

3.2. cengines 59

projectq Documentation, Release 0.7.2

Parameters command_list (list of Command objects) – list of commands to receive.

static return_new_mapping(num_qubits, cyclic, currently_allocated_ids, stored_commands,
current_mapping)

Build a mapping of qubits to a linear chain.

It goes through stored_commands and tries to find a mapping to apply these gates on a first come first
served basis. More compilicated scheme could try to optimize to apply as many gates as possible between
the Swaps.

Parameters
• num_qubits (int) – Total number of qubits in the linear chain

• cyclic (bool) – If linear chain is a cycle.

• currently_allocated_ids (set of int) – Logical qubit ids for which the Allocate
gate has already been processed and sent to the next engine but which are not yet deallocated
and hence need to be included in the new mapping.

• stored_commands (list of Command objects) – Future commands which should be
applied next.

• current_mapping – A current mapping as a dict. key is logical qubit id, value is place-
ment id. If there are different possible maps, this current mapping is used to minimize the
swaps to go to the new mapping by a heuristic.

Returns: A new mapping as a dict. key is logical qubit id, value is placement id

class projectq.cengines.LocalOptimizer(cache_size=5, m=None)
Circuit optimization compiler engine.

LocalOptimizer is a compiler engine which optimizes locally (merging rotations, cancelling gates with their
inverse) in a local window of user- defined size.

It stores all commands in a dict of lists, where each qubit has its own gate pipeline. After adding a gate, it tries
to merge / cancel successive gates using the get_merged and get_inverse functions of the gate (if available). For
examples, see BasicRotationGate. Once a list corresponding to a qubit contains >=m gates, the pipeline is sent
on to the next engine.

__init__(cache_size=5, m=None)
Initialize a LocalOptimizer object.

Parameters cache_size (int) – Number of gates to cache per qubit, before sending on the first
gate.

receive(command_list)
Receive a list of commands.

Receive commands from the previous engine and cache them. If a flush gate arrives, the entire buffer is
sent on.

class projectq.cengines.MainEngine(backend=None, engine_list=None, verbose=False)
The MainEngine class provides all functionality of the main compiler engine.

It initializes all further compiler engines (calls, e.g., .next_engine=. . .) and keeps track of measurement results
and active qubits (and their IDs).

next_engine

Next compiler engine (or the back-end).

60 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Type BasicEngine

main_engine

Self.

Type MainEngine

active_qubits

WeakSet containing all active qubits

Type WeakSet

dirty_qubits

Containing all dirty qubit ids

Type Set

backend

Access the back-end.

Type BasicEngine

mapper

Access to the mapper if there is one.

Type BasicMapperEngine

n_engines

Current number of compiler engines in the engine list

Type int

n_engines_max

Maximum number of compiler engines allowed in the engine list. Defaults to 100.

Type int

__init__(backend=None, engine_list=None, verbose=False)
Initialize the main compiler engine and all compiler engines.

Sets ‘next_engine’- and ‘main_engine’-attributes of all compiler engines and adds the back-end as the last
engine.

Parameters
• backend (BasicEngine) – Backend to send the compiled circuit to.

• engine_list (list<BasicEngine>) – List of engines / backends to use as compiler
engines. Note: The engine list must not contain multiple mappers (instances of BasicMap-
perEngine). Default: projectq.setups.default.get_engine_list()

• verbose (bool) – Either print full or compact error messages. Default: False (i.e. compact
error messages).

3.2. cengines 61

projectq Documentation, Release 0.7.2

Example

from projectq import MainEngine
eng = MainEngine() # uses default engine_list and the Simulator

Instead of the default engine_list one can use, e.g., one of the IBM setups which defines a custom engine_list
useful for one of the IBM chips

Example

import projectq.setups.ibm as ibm_setup
from projectq import MainEngine
eng = MainEngine(engine_list=ibm_setup.get_engine_list())
eng uses the default Simulator backend

Alternatively, one can specify all compiler engines explicitly, e.g.,

Example

from projectq.cengines import (TagRemover, AutoReplacer,
LocalOptimizer,
DecompositionRuleSet)

from projectq.backends import Simulator
from projectq import MainEngine
rule_set = DecompositionRuleSet()
engines = [AutoReplacer(rule_set), TagRemover(),

LocalOptimizer(3)]
eng = MainEngine(Simulator(), engines)

flush(deallocate_qubits=False)
Flush the entire circuit down the pipeline, clearing potential buffers (of, e.g., optimizers).

Parameters deallocate_qubits (bool) – If True, deallocates all qubits that are still alive
(invalidating references to them by setting their id to -1).

get_measurement_result(qubit)
Return the classical value of a measured qubit, given that an engine registered this result previously.

See also setMeasurementResult.

Parameters qubit (BasicQubit) – Qubit of which to get the measurement result.

Example

from projectq.ops import H, Measure
from projectq import MainEngine
eng = MainEngine()
qubit = eng.allocate_qubit() # quantum register of size 1
H | qubit
Measure | qubit
eng.get_measurement_result(qubit[0]) == int(qubit)

62 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

get_new_qubit_id()

Return a unique qubit id to be used for the next qubit allocation.

Returns New unique qubit id.

Return type new_qubit_id (int)

receive(command_list)
Forward the list of commands to the first engine.

Parameters command_list (list<Command>) – List of commands to receive (and then send
on)

send(command_list)
Forward the list of commands to the next engine in the pipeline.

It also shortens exception stack traces if self.verbose is False.

set_measurement_result(qubit, value)
Register a measurement result.

The engine being responsible for measurement results needs to register these results with the master engine
such that they are available when the user calls an int() or bool() conversion operator on a measured qubit.

Parameters
• qubit (BasicQubit) – Qubit for which to register the measurement result.

• value (bool) – Boolean value of the measurement outcome (True / False = 1 / 0 respec-
tively).

class projectq.cengines.ManualMapper(map_fun=<function ManualMapper.<lambda>>)
Manual Mapper which adds QubitPlacementTags to Allocate gate commands according to a user-specified map-
ping.

map

The function which maps a given qubit id to its location. It gets set when initializing the mapper.

Type function

__init__(map_fun=<function ManualMapper.<lambda>>)
Initialize the mapper to a given mapping.

If no mapping function is provided, the qubit id is used as the location.

Parameters map_fun (function) – Function which, given the qubit id, returns an integer de-
scribing the physical location (must be constant).

receive(command_list)
Receives a command list and passes it to the next engine, adding qubit placement tags to allocate gates.

Parameters command_list (list of Command objects) – list of commands to receive.

exception projectq.cengines.NotYetMeasuredError

Exception raised when trying to access the measurement value of a qubit that has not yet been measured.

class projectq.cengines.SwapAndCNOTFlipper(connectivity)
Flip CNOTs and translates Swaps to CNOTs where necessary.

Warning: This engine assumes that CNOT and Hadamard gates are supported by the following engines.

3.2. cengines 63

projectq Documentation, Release 0.7.2

Warning: This engine cannot be used as a backend.

__init__(connectivity)
Initialize the engine.

Parameters connectivity (set) – Set of tuples (c, t) where if (c, t) is an element of the set
means that a CNOT can be performed between the physical ids (c, t) with c being the control
and t being the target qubit.

is_available(cmd)
Check if the IBM backend can perform the Command cmd and return True if so.

Parameters cmd (Command) – The command to check

receive(command_list)
Receive a list of commands.

Receive a command list and if the command is a CNOT gate, it flips it using Hadamard gates if necessary;
if it is a Swap gate, it decomposes it using 3 CNOTs. All other gates are simply sent to the next engine.

Parameters command_list (list of Command objects) – list of commands to receive.

class projectq.cengines.TagRemover(tags=None)
Compiler engine that remove temporary command tags.

TagRemover is a compiler engine which removes temporary command tags (see the tag classes such as LoopTag
in projectq.meta._loop).

Removing tags is important (after having handled them if necessary) in order to enable optimizations across
meta-function boundaries (compute/ action/uncompute or loops after unrolling)

__init__(tags=None)
Initialize a TagRemover object.

Parameters tags – A list of meta tag classes (e.g., [ComputeTag, UncomputeTag]) denoting the
tags to remove

receive(command_list)
Receive a list of commands.

Receive a list of commands from the previous engine, remove all tags which are an instance of at least one
of the meta tags provided in the constructor, and then send them on to the next compiler engine.

Parameters command_list (list<Command>) – List of commands to receive and then (after
removing tags) send on.

exception projectq.cengines.UnsupportedEngineError

Exception raised when a non-supported compiler engine is encountered.

projectq.cengines.return_swap_depth(swaps)
Return the circuit depth to execute these swaps.

Parameters swaps (list of tuples) – Each tuple contains two integers representing the two IDs
of the qubits involved in the Swap operation

Returns Circuit depth to execute these swaps.

64 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

3.3 libs

The library collection of ProjectQ which, for now, consists of a tiny math library and an interface library to RevKit.
Soon, more libraries will be added.

3.3.1 Subpackages

libs.math

A tiny math library which will be extended thoughout the next weeks. Right now, it only contains the math functions
necessary to run Beauregard’s implementation of Shor’s algorithm.

projectq.libs.math._constantmath Module containing constant math quantum operations.
projectq.libs.math._default_rules Registers a few default replacement rules for Shor's al-

gorithm to work (see Examples).
projectq.libs.math._gates Quantum number math gates for ProjectQ.
projectq.libs.math._quantummath Definition of some mathematical quantum operations.
projectq.libs.math.AddConstant(a) Add a constant to a quantum number represented by a

quantum register, stored from low- to high-bit.
projectq.libs.math.AddConstantModN(a, N) Add a constant to a quantum number represented by a

quantum register modulo N.
projectq.libs.math.
all_defined_decomposition_rules

Built-in mutable sequence.

projectq.libs.math.
MultiplyByConstantModN(a, N)

Multiply a quantum number represented by a quantum
register by a constant modulo N.

projectq.libs.math.SubConstant(a) Subtract a constant from a quantum number represented
by a quantum register, stored from low- to high-bit.

projectq.libs.math.SubConstantModN(a, N) Subtract a constant from a quantum number represented
by a quantum register modulo N.

Submodules

_constantmath

Module containing constant math quantum operations.

projectq.libs.math._constantmath.add_constant(eng, constant, quint)
Add a classical constant c to the quantum integer (qureg) quint using Draper addition.

Note: Uses the Fourier-transform adder from https://arxiv.org/abs/quant-ph/0008033.

projectq.libs.math._constantmath.add_constant_modN(eng, constant, N, quint)
Add a classical constant c to a quantum integer (qureg) quint modulo N using Draper addition.

This function uses Draper addition and the construction from https://arxiv.org/abs/quant-ph/0205095.

projectq.libs.math._constantmath.inv_mod_N(a, N)

Calculate the inverse of a modulo N.

3.3. libs 65

https://arxiv.org/abs/quant-ph/0008033
https://arxiv.org/abs/quant-ph/0205095

projectq Documentation, Release 0.7.2

projectq.libs.math._constantmath.mul_by_constant_modN(eng, constant, N, quint_in)
Multiply a quantum integer by a classical number a modulo N.

i.e.,

|x> -> |a*x mod N>

(only works if a and N are relative primes, otherwise the modular inverse does not exist).

_default_rules

Registers a few default replacement rules for Shor’s algorithm to work (see Examples).

_gates

Quantum number math gates for ProjectQ.

class projectq.libs.math._gates.AddConstant(a)
Add a constant to a quantum number represented by a quantum register, stored from low- to high-bit.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[1] # qunum is now equal to 2
AddConstant(3) | qunum # qunum is now equal to 5

Important: if you run with conditional and carry, carry needs to be a quantum register for the com-
piler/decomposition to work.

get_inverse()

Return the inverse gate (subtraction of the same constant).

class projectq.libs.math._gates.AddConstantModN(a, N)

Add a constant to a quantum number represented by a quantum register modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[1] # qunum is now equal to 2
AddConstantModN(3, 4) | qunum # qunum is now equal to 1

Note: Pre-conditions:

• c < N

• c >= 0

• The value stored in the quantum register must be lower than N

66 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

get_inverse()

Return the inverse gate (subtraction of the same number a modulo the same number N).

class projectq.libs.math._gates.AddQuantumGate

Add up two quantum numbers represented by quantum registers.

The numbers are stored from low- to high-bit, i.e., qunum[0] is the LSB.

Example

qunum_a = eng.allocate_qureg(5) # 5-qubit number
qunum_b = eng.allocate_qureg(5) # 5-qubit number
carry_bit = eng.allocate_qubit()

X | qunum_a[2] #qunum_a is now equal to 4
X | qunum_b[3] #qunum_b is now equal to 8
AddQuantum | (qunum_a, qunum_b, carry)
qunum_a remains 4, qunum_b is now 12 and carry_bit is 0

get_inverse()

Return the inverse gate (subtraction of the same number a modulo the same number N).

get_math_function(qubits)
Get the math function associated with an AddQuantumGate.

class projectq.libs.math._gates.ComparatorQuantumGate

Flip a compare qubit if the binary value of first imput is higher than the second input.

The numbers are stored from low- to high-bit, i.e., qunum[0] is the LSB. .. rubric:: Example

qunum_a = eng.allocate_qureg(5) # 5-qubit number
qunum_b = eng.allocate_qureg(5) # 5-qubit number
compare_bit = eng.allocate_qubit()
X | qunum_a[4] #qunum_a is now equal to 16
X | qunum_b[3] #qunum_b is now equal to 8
ComparatorQuantum | (qunum_a, qunum_b, compare_bit)
qunum_a and qunum_b remain 16 and 8, qunum_b is now 12 and
compare bit is now 1

get_inverse()

Return the inverse of this gate.

class projectq.libs.math._gates.DivideQuantumGate

Divide one quantum number from another.

Takes three inputs which should be quantum registers of equal size; a dividend, a remainder and a divisor. The
remainder should be in the state |0. . . 0> and the dividend should be bigger than the divisor.The gate returns (in
this order): the remainder, the quotient and the divisor.

The numbers are stored from low- to high-bit, i.e., qunum[0] is the LSB.

Example: .. code-block:: python

qunum_a = eng.allocate_qureg(5) # 5-qubit number qunum_b = eng.allocate_qureg(5) # 5-qubit num-
ber qunum_c = eng.allocate_qureg(5) # 5-qubit number

3.3. libs 67

projectq Documentation, Release 0.7.2

All(X) | [qunum_a[0],qunum_a[3]] #qunum_a is now equal to 9 X | qunum_c[2] #qunum_c is now
equal to 4

DivideQuantum | (qunum_a, qunum_b,qunum_c) # qunum_a is now equal to 1 (remainder), qunum_b
is now # equal to 2 (quotient) and qunum_c remains 4 (divisor)

|dividend>|remainder>|divisor> -> |remainder>|quotient>|divisor>

get_inverse()

Return the inverse of this gate.

class projectq.libs.math._gates.MultiplyByConstantModN(a, N)

Multiply a quantum number represented by a quantum register by a constant modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[2] # qunum is now equal to 4
MultiplyByConstantModN(3,5) | qunum # qunum is now 2.

Note: Pre-conditions:

• c < N

• c >= 0

• gcd(c, N) == 1

• The value stored in the quantum register must be lower than N

class projectq.libs.math._gates.MultiplyQuantumGate

Multiply two quantum numbers represented by a quantum registers.

Requires three quantum registers as inputs, the first two are the numbers to be multiplied and should have the
same size (n qubits). The third register will hold the product and should be of size 2n+1. The numbers are stored
from low- to high-bit, i.e., qunum[0] is the LSB.

Example

qunum_a = eng.allocate_qureg(4) qunum_b = eng.allocate_qureg(4) qunum_c = eng.allocate_qureg(9) X |
qunum_a[2] # qunum_a is now 4 X | qunum_b[3] # qunum_b is now 8 MultiplyQuantum() | (qunum_a, qunum_b,
qunum_c) # qunum_a remains 4 and qunum_b remains 8, qunum_c is now equal to 32

get_inverse()

Return the inverse of this gate.

projectq.libs.math._gates.SubConstant(a)
Subtract a constant from a quantum number represented by a quantum register, stored from low- to high-bit.

Parameters a (int) – Constant to subtract

68 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[2] # qunum is now equal to 4
SubConstant(3) | qunum # qunum is now equal to 1

projectq.libs.math._gates.SubConstantModN(a, N)

Subtract a constant from a quantum number represented by a quantum register modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

Parameters
• a (int) – Constant to add

• N (int) – Constant modulo which the addition of a should be carried out.

Example

qunum = eng.allocate_qureg(3) # 3-qubit number
X | qunum[1] # qunum is now equal to 2
SubConstantModN(4,5) | qunum # qunum is now -2 = 6 = 1 (mod 5)

Note: Pre-conditions:

• c < N

• c >= 0

• The value stored in the quantum register must be lower than N

class projectq.libs.math._gates.SubtractQuantumGate

Subtract one quantum number from another quantum number both represented by quantum registers.

Example: .. code-block:: python

qunum_a = eng.allocate_qureg(5) # 5-qubit number qunum_b = eng.allocate_qureg(5) # 5-qubit num-
ber X | qunum_a[2] #qunum_a is now equal to 4 X | qunum_b[3] #qunum_b is now equal to 8 Sub-
tractQuantum | (qunum_a, qunum_b) # qunum_a remains 4, qunum_b is now 4

get_inverse()

Return the inverse gate (subtraction of the same number a modulo the same number N).

_quantummath

Definition of some mathematical quantum operations.

projectq.libs.math._quantummath.add_quantum(eng, quint_a, quint_b, carry=None)
Add two quantum integers.

i.e.,

|a0. . . a(n-1)>|b(0). . . b(n-1)>|c> -> |a0. . . a(n-1)>|b+a(0). . . b+a(n)>

(only works if quint_a and quint_b are the same size and carry is a single qubit)

Parameters

3.3. libs 69

projectq Documentation, Release 0.7.2

• eng (MainEngine) – ProjectQ MainEngine

• quint_a (list) – Quantum register (or list of qubits)

• quint_b (list) – Quantum register (or list of qubits)

• carry (list) – Carry qubit

Notes

Ancilla: 0, size: 7n-6, toffoli: 2n-1, depth: 5n-3.

References

Quantum addition using ripple carry from: https://arxiv.org/pdf/0910.2530.pdf

projectq.libs.math._quantummath.comparator(eng, quint_a, quint_b, comp)
Compare the size of two quantum integers.

i.e,

if a>b: |a>|b>|c> -> |a>|b>|c+1>

else: |a>|b>|c> -> |a>|b>|c>

(only works if quint_a and quint_b are the same size and the comparator is 1 qubit)

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• quint_a (list) – Quantum register (or list of qubits)

• quint_b (list) – Quantum register (or list of qubits)

• comp (Qubit) – Comparator qubit

Notes

Comparator flipping a compare qubit by computing the high bit of b-a, which is 1 if and only if a > b. The high
bit is computed using the first half of circuit in AddQuantum (such that the high bit is written to the carry qubit)
and then undoing the first half of the circuit. By complementing b at the start and b+a at the end the high bit of
b-a is calculated.

Ancilla: 0, size: 8n-3, toffoli: 2n+1, depth: 4n+3.

projectq.libs.math._quantummath.inverse_add_quantum_carry(eng, quint_a, quint_b)
Inverse of quantum addition with carry.

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• quint_a (list) – Quantum register (or list of qubits)

• quint_b (list) – Quantum register (or list of qubits)

70 Chapter 3. Code Documentation

https://arxiv.org/pdf/0910.2530.pdf

projectq Documentation, Release 0.7.2

projectq.libs.math._quantummath.inverse_quantum_division(eng, remainder, quotient, divisor)
Perform the inverse of a restoring integer division.

i.e.,

|remainder>|quotient>|divisor> -> |dividend>|remainder(0)>|divisor>

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• dividend (list) – Quantum register (or list of qubits)

• remainder (list) – Quantum register (or list of qubits)

• divisor (list) – Quantum register (or list of qubits)

projectq.libs.math._quantummath.inverse_quantum_multiplication(eng, quint_a, quint_b, product)
Inverse of the multiplication of two quantum integers.

i.e,

|a>|b>|a*b> -> |a>|b>|0>

(only works if quint_a and quint_b are of the same size, n qubits and product has size 2n+1)

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• quint_a (list) – Quantum register (or list of qubits)

• quint_b (list) – Quantum register (or list of qubits)

• product (list) – Quantum register (or list of qubits) storing the result

projectq.libs.math._quantummath.quantum_conditional_add(eng, quint_a, quint_b, conditional)
Add up two quantum integers if conditional is high.

i.e.,

|a>|b>|c> -> |a>|b+a>|c> (without a carry out qubit)

if conditional is low, no operation is performed, i.e., |a>|b>|c> -> |a>|b>|c>

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• quint_a (list) – Quantum register (or list of qubits)

• quint_b (list) – Quantum register (or list of qubits)

• conditional (list) – Conditional qubit

Notes

Ancilla: 0, Size: 7n-7, Toffoli: 3n-3, Depth: 5n-3.

3.3. libs 71

projectq Documentation, Release 0.7.2

References

Quantum Conditional Add from https://arxiv.org/pdf/1609.01241.pdf

projectq.libs.math._quantummath.quantum_conditional_add_carry(eng, quint_a, quint_b, ctrl, z)
Add up two quantum integers if the control qubit is |1>.

i.e.,

|a>|b>|ctrl>|z(0)z(1)> -> |a>|s(0). . . s(n-1)>|ctrl>|s(n)z(1)> (where s denotes the sum of a and b)

If the control qubit is |0> no operation is performed:

|a>|b>|ctrl>|z(0)z(1)> -> |a>|b>|ctrl>|z(0)z(1)>

(only works if quint_a and quint_b are of the same size, ctrl is a single qubit and z is a quantum register with 2
qubits.

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• quint_a (list) – Quantum register (or list of qubits)

• quint_b (list) – Quantum register (or list of qubits)

• ctrl (list) – Control qubit

• z (list) – Quantum register with 2 qubits

Notes

Ancilla: 2, size: 7n - 4, toffoli: 3n + 2, depth: 5n.

References

Quantum conditional add with no input carry from: https://arxiv.org/pdf/1706.05113.pdf

projectq.libs.math._quantummath.quantum_division(eng, dividend, remainder, divisor)
Perform restoring integer division.

i.e.,

|dividend>|remainder>|divisor> -> |remainder>|quotient>|divisor>

(only works if all three qubits are of equal length)

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• dividend (list) – Quantum register (or list of qubits)

• remainder (list) – Quantum register (or list of qubits)

• divisor (list) – Quantum register (or list of qubits)

72 Chapter 3. Code Documentation

https://arxiv.org/pdf/1609.01241.pdf
https://arxiv.org/pdf/1706.05113.pdf

projectq Documentation, Release 0.7.2

Notes

Ancilla: n, size 16n^2 - 13, toffoli: 5n^2 -5 , depth: 10n^2-6.

References

Quantum Restoring Integer Division from: https://arxiv.org/pdf/1609.01241.pdf.

projectq.libs.math._quantummath.quantum_multiplication(eng, quint_a, quint_b, product)
Multiplies two quantum integers.

i.e,

|a>|b>|0> -> |a>|b>|a*b>

(only works if quint_a and quint_b are of the same size, n qubits and product has size 2n+1).

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• quint_a (list) – Quantum register (or list of qubits)

• quint_b (list) – Quantum register (or list of qubits)

• product (list) – Quantum register (or list of qubits) storing the result

Notes

Ancilla: 2n + 1, size: 7n^2 - 9n + 4, toffoli: 5n^2 - 4n, depth: 3n^2 - 2.

References

Quantum multiplication from: https://arxiv.org/abs/1706.05113.

projectq.libs.math._quantummath.subtract_quantum(eng, quint_a, quint_b)
Subtract two quantum integers.

i.e.,

|a>|b> -> |a>|b-a>

(only works if quint_a and quint_b are the same size)

Parameters
• eng (MainEngine) – ProjectQ MainEngine

• quint_a (list) – Quantum register (or list of qubits)

• quint_b (list) – Quantum register (or list of qubits)

3.3. libs 73

https://arxiv.org/pdf/1609.01241.pdf
https://arxiv.org/abs/1706.05113

projectq Documentation, Release 0.7.2

Notes

Quantum subtraction using bitwise complementation of quantum adder: b-a = (a + b’)’. Same as the quantum
addition circuit except that the steps involving the carry qubit are left out and complement b at the start and at
the end of the circuit is added.

Ancilla: 0, size: 9n-8, toffoli: 2n-2, depth: 5n-5.

References

Quantum addition using ripple carry from: https://arxiv.org/pdf/0910.2530.pdf

Module contents

class projectq.libs.math.AddConstant(a)
Add a constant to a quantum number represented by a quantum register, stored from low- to high-bit.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[1] # qunum is now equal to 2
AddConstant(3) | qunum # qunum is now equal to 5

Important: if you run with conditional and carry, carry needs to be a quantum register for the com-
piler/decomposition to work.

__init__(a)
Initialize the gate to the number to add.

Parameters a (int) – Number to add to a quantum register.

It also initializes its base class, BasicMathGate, with the corresponding function, so it can be emulated
efficiently.

get_inverse()

Return the inverse gate (subtraction of the same constant).

class projectq.libs.math.AddConstantModN(a, N)

Add a constant to a quantum number represented by a quantum register modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[1] # qunum is now equal to 2
AddConstantModN(3, 4) | qunum # qunum is now equal to 1

Note: Pre-conditions:

• c < N

• c >= 0

74 Chapter 3. Code Documentation

https://arxiv.org/pdf/0910.2530.pdf

projectq Documentation, Release 0.7.2

• The value stored in the quantum register must be lower than N

__init__(a, N)

Initialize the gate to the number to add modulo N.

Parameters
• a (int) – Number to add to a quantum register (0 <= a < N).

• N (int) – Number modulo which the addition is carried out.

It also initializes its base class, BasicMathGate, with the corresponding function, so it can be emulated
efficiently.

get_inverse()

Return the inverse gate (subtraction of the same number a modulo the same number N).

class projectq.libs.math.MultiplyByConstantModN(a, N)

Multiply a quantum number represented by a quantum register by a constant modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[2] # qunum is now equal to 4
MultiplyByConstantModN(3,5) | qunum # qunum is now 2.

Note: Pre-conditions:

• c < N

• c >= 0

• gcd(c, N) == 1

• The value stored in the quantum register must be lower than N

__init__(a, N)

Initialize the gate to the number to multiply with modulo N.

Parameters
• a (int) – Number by which to multiply a quantum register (0 <= a < N).

• N (int) – Number modulo which the multiplication is carried out.

It also initializes its base class, BasicMathGate, with the corresponding function, so it can be emulated
efficiently.

projectq.libs.math.SubConstant(a)
Subtract a constant from a quantum number represented by a quantum register, stored from low- to high-bit.

Parameters a (int) – Constant to subtract

3.3. libs 75

projectq Documentation, Release 0.7.2

Example

qunum = eng.allocate_qureg(5) # 5-qubit number
X | qunum[2] # qunum is now equal to 4
SubConstant(3) | qunum # qunum is now equal to 1

projectq.libs.math.SubConstantModN(a, N)

Subtract a constant from a quantum number represented by a quantum register modulo N.

The number is stored from low- to high-bit, i.e., qunum[0] is the LSB.

Parameters
• a (int) – Constant to add

• N (int) – Constant modulo which the addition of a should be carried out.

Example

qunum = eng.allocate_qureg(3) # 3-qubit number
X | qunum[1] # qunum is now equal to 2
SubConstantModN(4,5) | qunum # qunum is now -2 = 6 = 1 (mod 5)

Note: Pre-conditions:

• c < N

• c >= 0

• The value stored in the quantum register must be lower than N

libs.revkit

This library integrates RevKit into ProjectQ to allow some automatic synthesis routines for reversible logic. The library
adds the following operations that can be used to construct quantum circuits:

• ControlFunctionOracle: Synthesizes a reversible circuit from Boolean control function

• PermutationOracle: Synthesizes a reversible circuit for a permutation

• PhaseOracle: Synthesizes phase circuit from an arbitrary Boolean function

RevKit can be installed from PyPi with pip install revkit.

Note: The RevKit Python module must be installed in order to use this ProjectQ library.

There exist precompiled binaries in PyPi, as well as a source distribution. Note that a C++ compiler with C++17
support is required to build the RevKit python module from source. Examples for compatible compilers are Clang 6.0,
GCC 7.3, and GCC 8.1.

The integration of RevKit into ProjectQ and other quantum programming languages is described in the paper

• Mathias Soeken, Thomas Haener, and Martin Roetteler “Programming Quantum Computers Using Design Au-
tomation,” in: Design Automation and Test in Europe (2018) [arXiv:1803.01022]

76 Chapter 3. Code Documentation

https://msoeken.github.io/revkit.html
https://arxiv.org/abs/1803.01022

projectq Documentation, Release 0.7.2

projectq.libs.revkit._control_function RevKit support for control function oracles.
projectq.libs.revkit._permutation RevKit support for permutation oracles.
projectq.libs.revkit._phase RevKit support for phase oracles.
projectq.libs.revkit._utils Module containing some utility functions
projectq.libs.revkit.
ControlFunctionOracle(...)

Synthesize a negation controlled by an arbitrary control
function.

projectq.libs.revkit.PermutationOracle(...) Synthesize a permutation using RevKit.
projectq.libs.revkit.PhaseOracle(function, ...) Synthesize phase circuit from an arbitrary Boolean func-

tion.

Submodules

_control_function

RevKit support for control function oracles.

class projectq.libs.revkit._control_function.ControlFunctionOracle(function, **kwargs)
Synthesize a negation controlled by an arbitrary control function.

This creates a circuit for a NOT gate which is controlled by an arbitrary Boolean control function. The control
function is provided as integer representation of the function’s truth table in binary notation. For example, for the
majority-of-three function, which truth table 11101000, the value for function can be, e.g., 0b11101000, 0xe8,
or 232.

Example

This example creates a circuit that causes to invert qubit d, the majority-of-three function evaluates to true for
the control qubits a, b, and c.

ControlFunctionOracle(0x8e) | ([a, b, c], d)

_permutation

RevKit support for permutation oracles.

class projectq.libs.revkit._permutation.PermutationOracle(permutation, **kwargs)
Synthesize a permutation using RevKit.

Given a permutation over 2**q elements (starting from 0), this class helps to automatically find a reversible
circuit over q qubits that realizes that permutation.

3.3. libs 77

projectq Documentation, Release 0.7.2

Example

PermutationOracle([0, 2, 1, 3]) | (a, b)

_phase

RevKit support for phase oracles.

class projectq.libs.revkit._phase.PhaseOracle(function, **kwargs)
Synthesize phase circuit from an arbitrary Boolean function.

This creates a phase circuit from a Boolean function. It inverts the phase of all amplitudes for which the function
evaluates to 1. The Boolean function is provided as integer representation of the function’s truth table in binary
notation. For example, for the majority-of-three function, which truth table 11101000, the value for function can
be, e.g., 0b11101000, 0xe8, or 232.

Note that a phase circuit can only accurately be found for a normal function, i.e., a function that maps the input
pattern 0, 0, . . . , 0 to 0. The circuits for a function and its inverse are the same.

Example

This example creates a phase circuit based on the majority-of-three function on qubits a, b, and c.

PhaseOracle(0x8e) | (a, b, c)

_utils

Module containing some utility functions

Module contents

Module containing code to interface with RevKit

class projectq.libs.revkit.ControlFunctionOracle(function, **kwargs)
Synthesize a negation controlled by an arbitrary control function.

This creates a circuit for a NOT gate which is controlled by an arbitrary Boolean control function. The control
function is provided as integer representation of the function’s truth table in binary notation. For example, for the
majority-of-three function, which truth table 11101000, the value for function can be, e.g., 0b11101000, 0xe8,
or 232.

Example

This example creates a circuit that causes to invert qubit d, the majority-of-three function evaluates to true for
the control qubits a, b, and c.

ControlFunctionOracle(0x8e) | ([a, b, c], d)

78 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

__init__(function, **kwargs)
Initialize a control function oracle.

Parameters function (int) – Function truth table.

Keyword Arguments synth – A RevKit synthesis command which creates a reversible circuit
based on a truth table and requires no additional ancillae (e.g., revkit.esopbs). Can also
be a nullary lambda that calls several RevKit commands. Default: revkit.esopbs

__or__(qubits)
Apply control function to qubits (and synthesizes circuit).

Parameters qubits (tuple<Qureg>) – Qubits to which the control function is being applied.
The first n qubits are for the controls, the last qubit is for the target qubit.

class projectq.libs.revkit.PermutationOracle(permutation, **kwargs)
Synthesize a permutation using RevKit.

Given a permutation over 2**q elements (starting from 0), this class helps to automatically find a reversible
circuit over q qubits that realizes that permutation.

Example

PermutationOracle([0, 2, 1, 3]) | (a, b)

__init__(permutation, **kwargs)
Initialize a permutation oracle.

Parameters permutation (list<int>) – Permutation (starting from 0).

Keyword Arguments synth – A RevKit synthesis command which creates a reversible circuit
based on a reversible truth table (e.g., revkit.tbs or revkit.dbs). Can also be a nullary
lambda that calls several RevKit commands. Default: revkit.tbs

__or__(qubits)
Apply permutation to qubits (and synthesizes circuit).

Parameters qubits (tuple<Qureg>) – Qubits to which the permutation is being applied.

class projectq.libs.revkit.PhaseOracle(function, **kwargs)
Synthesize phase circuit from an arbitrary Boolean function.

This creates a phase circuit from a Boolean function. It inverts the phase of all amplitudes for which the function
evaluates to 1. The Boolean function is provided as integer representation of the function’s truth table in binary
notation. For example, for the majority-of-three function, which truth table 11101000, the value for function can
be, e.g., 0b11101000, 0xe8, or 232.

Note that a phase circuit can only accurately be found for a normal function, i.e., a function that maps the input
pattern 0, 0, . . . , 0 to 0. The circuits for a function and its inverse are the same.

3.3. libs 79

projectq Documentation, Release 0.7.2

Example

This example creates a phase circuit based on the majority-of-three function on qubits a, b, and c.

PhaseOracle(0x8e) | (a, b, c)

__init__(function, **kwargs)
Initialize a phase oracle.

Parameters function (int) – Function truth table.

Keyword Arguments synth – A RevKit synthesis command which creates a reversible circuit
based on a truth table and requires no additional ancillae (e.g., revkit.esopps). Can also
be a nullary lambda that calls several RevKit commands. Default: revkit.esopps

__or__(qubits)
Apply phase circuit to qubits (and synthesizes circuit).

Parameters qubits (tuple<Qureg>) – Qubits to which the phase circuit is being applied.

3.3.2 Submodules

projectq.libs.hist contains a function to plot measurement outcome prob-
abilities as a histogram for the simulator

hist

contains a function to plot measurement outcome probabilities as a histogram for the simulator

3.3.3 Module contents

ProjectQ module containing libraries expanding the basic functionalities of ProjectQ

3.4 meta

Contains meta statements which allow more optimal code while making it easier for users to write their code. Examples
are with Compute, followed by an automatic uncompute or with Control, which allows the user to condition an entire
code block upon the state of a qubit.

80 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

projectq.meta._compute Definition of Compute, Uncompute and CustomUncom-
pute.

projectq.meta._control Contains the tools to make an entire section of operations
controlled.

projectq.meta._dagger Tools to easily invert a sequence of gates.
projectq.meta._dirtyqubit Define the DirtyQubitTag meta tag.
projectq.meta._exceptions Exception classes for projectq.meta.
projectq.meta._logicalqubit Definition of LogicalQubitIDTag to annotate a Measure-

Gate for mapped qubits.
projectq.meta._loop Tools to implement loops.
projectq.meta._util Tools to add/remove compiler engines to the

MainEngine list.
projectq.meta.canonical_ctrl_state(...) Return canonical form for control state.
projectq.meta.Compute(engine) Start a compute-section.
projectq.meta.ComputeTag() Compute meta tag.
projectq.meta.Control(engine, qubits[, ...]) Condition an entire code block on the value of qubits

being 1.
projectq.meta.CustomUncompute(engine) Start a custom uncompute-section.
projectq.meta.Dagger(engine) Invert an entire code block.
projectq.meta.DirtyQubitTag() Dirty qubit meta tag.
projectq.meta.drop_engine_after(prev_engine) Remove an engine from the singly-linked list of engines.
projectq.meta.get_control_count(cmd) Return the number of control qubits of the command ob-

ject cmd.
projectq.meta.has_negative_control(cmd) Return whether a command has negatively controlled

qubits.
projectq.meta.insert_engine(prev_engine, ...) Insert an engine into the singly-linked list of engines.
projectq.meta.LogicalQubitIDTag(logical_qubit_id)LogicalQubitIDTag for a mapped qubit to annotate a

MeasureGate.
projectq.meta.Loop(engine, num) Loop n times over an entire code block.
projectq.meta.LoopTag(num) Loop meta tag.
projectq.meta.Uncompute(engine) Uncompute automatically.
projectq.meta.UncomputeTag() Uncompute meta tag.

3.4.1 Submodules

_compute

Definition of Compute, Uncompute and CustomUncompute.

Contains Compute, Uncompute, and CustomUncompute classes which can be used to annotate Compute / Action /
Uncompute sections, facilitating the conditioning of the entire operation on the value of a qubit / register (only Action
needs controls). This file also defines the corresponding meta tags.

class projectq.meta._compute.Compute(engine)
Start a compute-section.

3.4. meta 81

projectq Documentation, Release 0.7.2

Example

with Compute(eng):
do_something(qubits)

action(qubits)
Uncompute(eng) # runs inverse of the compute section

Warning: If qubits are allocated within the compute section, they must either be uncomputed and deallo-
cated within that section or, alternatively, uncomputed and deallocated in the following uncompute section.

This means that the following examples are valid:

with Compute(eng):
anc = eng.allocate_qubit()
do_something_with_ancilla(anc)
...
uncompute_ancilla(anc)
del anc

do_something_else(qubits)

Uncompute(eng) # will allocate a new ancilla (with a different id)
and then deallocate it again

with Compute(eng):
anc = eng.allocate_qubit()
do_something_with_ancilla(anc)
...

do_something_else(qubits)

Uncompute(eng) # will deallocate the ancilla!

After the uncompute section, ancilla qubits allocated within the compute section will be invalid (and deallo-
cated). The same holds when using CustomUncompute.

Failure to comply with these rules results in an exception being thrown.

class projectq.meta._compute.ComputeEngine

Add Compute-tags to all commands and stores them (to later uncompute them automatically).

end_compute()

End the compute step (exit the with Compute() - statement).

Will tell the Compute-engine to stop caching. It then waits for the uncompute instruction, which is when it
sends all cached commands inverted and in reverse order down to the next compiler engine.

Raises QubitManagementError – If qubit has been deallocated in Compute section which has
not been allocated in Compute section

receive(command_list)
Receive a list of commands.

If in compute-mode, receive commands and store deepcopy of each cmd. Add ComputeTag to received
cmd and send it on. Otherwise, send all received commands directly to next_engine.

82 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Parameters command_list (list<Command>) – List of commands to receive.

run_uncompute()

Send uncomputing gates.

Sends the inverse of the stored commands in reverse order down to the next engine. And also deals with
allocated qubits in Compute section. If a qubit has been allocated during compute, it will be deallocated
during uncompute. If a qubit has been allocated and deallocated during compute, then a new qubit is
allocated and deallocated during uncompute.

class projectq.meta._compute.ComputeTag

Compute meta tag.

class projectq.meta._compute.CustomUncompute(engine)
Start a custom uncompute-section.

Example

with Compute(eng):
do_something(qubits)

action(qubits)
with CustomUncompute(eng):

do_something_inverse(qubits)

Raises QubitManagementError – If qubits are allocated within Compute or within CustomUncom-
pute context but are not deallocated.

exception projectq.meta._compute.NoComputeSectionError

Exception raised if uncompute is called but no compute section found.

projectq.meta._compute.Uncompute(engine)
Uncompute automatically.

Example

with Compute(eng):
do_something(qubits)

action(qubits)
Uncompute(eng) # runs inverse of the compute section

class projectq.meta._compute.UncomputeEngine

Adds Uncompute-tags to all commands.

receive(command_list)
Receive a list of commands.

Receive commands and add an UncomputeTag to their tags.

Parameters command_list (list<Command>) – List of commands to handle.

class projectq.meta._compute.UncomputeTag

Uncompute meta tag.

3.4. meta 83

projectq Documentation, Release 0.7.2

_control

Contains the tools to make an entire section of operations controlled.

Example

with Control(eng, qubit1):
H | qubit2
X | qubit3

class projectq.meta._control.Control(engine, qubits, ctrl_state=CtrlAll.One)
Condition an entire code block on the value of qubits being 1.

Example

with Control(eng, ctrlqubits):
do_something(otherqubits)

class projectq.meta._control.ControlEngine(qubits, ctrl_state=CtrlAll.One)
Add control qubits to all commands that have no compute / uncompute tags.

receive(command_list)
Receive a list of commands.

projectq.meta._control.canonical_ctrl_state(ctrl_state, num_qubits)
Return canonical form for control state.

Parameters
• ctrl_state (int,str,CtrlAll) – Initial control state representation

• num_qubits (int) – number of control qubits

Returns Canonical form of control state (currently a string composed of ‘0’ and ‘1’)

Note: In case of integer values for ctrl_state, the least significant bit applies to the first qubit in the qubit register,
e.g. if ctrl_state == 2, its binary representation if ‘10’ with the least significan bit being 0.

This means in particular that the followings are equivalent:

canonical_ctrl_state(6, 3) == canonical_ctrl_state(6, '110')

projectq.meta._control.get_control_count(cmd)
Return the number of control qubits of the command object cmd.

projectq.meta._control.has_negative_control(cmd)
Return whether a command has negatively controlled qubits.

84 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

_dagger

Tools to easily invert a sequence of gates.

with Dagger(eng):
H | qubit1
Rz(0.5) | qubit2

class projectq.meta._dagger.Dagger(engine)
Invert an entire code block.

Use it with a with-statement, i.e.,

with Dagger(eng):
[code to invert]

Warning: If the code to invert contains allocation of qubits, those qubits have to be deleted prior to exiting
the ‘with Dagger()’ context.

This code is NOT VALID:
with Dagger(eng):

qb = eng.allocate_qubit()
H | qb # qb is still available!!!

The correct way of handling qubit (de-)allocation is as follows:

with Dagger(eng):
qb = eng.allocate_qubit()
...
del qb # sends deallocate gate (which becomes an allocate)

class projectq.meta._dagger.DaggerEngine

Store all commands and, when done, inverts the circuit & runs it.

receive(command_list)
Receive a list of commands and store them for later inversion.

Parameters command_list (list<Command>) – List of commands to temporarily store.

run()

Run the stored circuit in reverse and check that local qubits have been deallocated.

_dirtyqubit

Define the DirtyQubitTag meta tag.

class projectq.meta._dirtyqubit.DirtyQubitTag

Dirty qubit meta tag.

3.4. meta 85

projectq Documentation, Release 0.7.2

_exceptions

Exception classes for projectq.meta.

exception projectq.meta._exceptions.QubitManagementError

Exception raised when the lifetime of a qubit is problematic within a context manager.

This may occur within Loop, Dagger or Compute regions.

_logicalqubit

Definition of LogicalQubitIDTag to annotate a MeasureGate for mapped qubits.

class projectq.meta._logicalqubit.LogicalQubitIDTag(logical_qubit_id)
LogicalQubitIDTag for a mapped qubit to annotate a MeasureGate.

logical_qubit_id

Logical qubit id

Type int

_loop

Tools to implement loops.

Example

with Loop(eng, 4):
H | qb

Rz(M_PI/3.) | qb

class projectq.meta._loop.Loop(engine, num)

Loop n times over an entire code block.

Example

with Loop(eng, 4):
[quantum gates to be executed 4 times]

Warning: If the code in the loop contains allocation of qubits, those qubits have to be deleted prior to exiting
the ‘with Loop()’ context.

This code is NOT VALID:
with Loop(eng, 4):

qb = eng.allocate_qubit()
H | qb # qb is still available!!!

The correct way of handling qubit (de-)allocation is as follows:

with Loop(eng, 4):
qb = eng.allocate_qubit()
...
del qb # sends deallocate gate

86 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

class projectq.meta._loop.LoopEngine(num)

A compiler engine to represent executing part of the code multiple times.

Stores all commands and, when done, executes them num times if no loop tag handler engine is available. If
there is one, it adds a loop_tag to the commands and sends them on.

receive(command_list)
Receive (and potentially temporarily store) all commands.

Add LoopTag to all receiving commands and send to the next engine if a further engine is a LoopTag-
handling engine. Otherwise store all commands (to later unroll them). Check that within the loop body,
all allocated qubits have also been deallocated. If loop needs to be unrolled and ancilla qubits have been
allocated within the loop body, then store a reference all these qubit ids (to change them when unrolling the
loop)

Parameters command_list (list<Command>) – List of commands to store and later unroll or,
if there is a LoopTag-handling engine, add the LoopTag.

run()

Apply the loop statements to all stored commands.

Unrolls the loop if LoopTag is not supported by any of the following engines, i.e., if

is_meta_tag_supported(next_engine, LoopTag) == False

class projectq.meta._loop.LoopTag(num)

Loop meta tag.

loop_tag_id = 0

_util

Tools to add/remove compiler engines to the MainEngine list.

projectq.meta._util.drop_engine_after(prev_engine)
Remove an engine from the singly-linked list of engines.

Parameters prev_engine (projectq.cengines.BasicEngine) – The engine just before the en-
gine to drop.

Returns The dropped engine.

Return type Engine

projectq.meta._util.insert_engine(prev_engine, engine_to_insert)
Insert an engine into the singly-linked list of engines.

It also sets the correct main_engine for engine_to_insert.

Parameters
• prev_engine (projectq.cengines.BasicEngine) – The engine just before the insertion

point.

• engine_to_insert (projectq.cengines.BasicEngine) – The engine to insert at the
insertion point.

3.4. meta 87

projectq Documentation, Release 0.7.2

3.4.2 Module contents

The projectq.meta package features meta instructions which help both the user and the compiler in writing/producing
efficient code. It includes, e.g.,

• Loop (with Loop(eng): . . .)

• Compute/Uncompute (with Compute(eng): . . . , [. . .], Uncompute(eng))

• Control (with Control(eng, ctrl_qubits): . . .)

• Dagger (with Dagger(eng): . . .)

class projectq.meta.Compute(engine)
Start a compute-section.

Example

with Compute(eng):
do_something(qubits)

action(qubits)
Uncompute(eng) # runs inverse of the compute section

Warning: If qubits are allocated within the compute section, they must either be uncomputed and deallo-
cated within that section or, alternatively, uncomputed and deallocated in the following uncompute section.

This means that the following examples are valid:

with Compute(eng):
anc = eng.allocate_qubit()
do_something_with_ancilla(anc)
...
uncompute_ancilla(anc)
del anc

do_something_else(qubits)

Uncompute(eng) # will allocate a new ancilla (with a different id)
and then deallocate it again

with Compute(eng):
anc = eng.allocate_qubit()
do_something_with_ancilla(anc)
...

do_something_else(qubits)

Uncompute(eng) # will deallocate the ancilla!

After the uncompute section, ancilla qubits allocated within the compute section will be invalid (and deallo-
cated). The same holds when using CustomUncompute.

Failure to comply with these rules results in an exception being thrown.

88 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

__init__(engine)
Initialize a Compute context.

Parameters engine (BasicEngine) – Engine which is the first to receive all commands (nor-
mally: MainEngine).

class projectq.meta.ComputeTag

Compute meta tag.

class projectq.meta.Control(engine, qubits, ctrl_state=CtrlAll.One)
Condition an entire code block on the value of qubits being 1.

Example

with Control(eng, ctrlqubits):
do_something(otherqubits)

__init__(engine, qubits, ctrl_state=CtrlAll.One)
Enter a controlled section.

Parameters
• engine – Engine which handles the commands (usually MainEngine)

• qubits (list of Qubit objects) – Qubits to condition on

Enter the section using a with-statement:

with Control(eng, ctrlqubits):
...

class projectq.meta.CustomUncompute(engine)
Start a custom uncompute-section.

Example

with Compute(eng):
do_something(qubits)

action(qubits)
with CustomUncompute(eng):

do_something_inverse(qubits)

Raises QubitManagementError – If qubits are allocated within Compute or within CustomUncom-
pute context but are not deallocated.

__init__(engine)
Initialize a CustomUncompute context.

Parameters engine (BasicEngine) – Engine which is the first to receive all commands (nor-
mally: MainEngine).

class projectq.meta.Dagger(engine)
Invert an entire code block.

Use it with a with-statement, i.e.,

3.4. meta 89

projectq Documentation, Release 0.7.2

with Dagger(eng):
[code to invert]

Warning: If the code to invert contains allocation of qubits, those qubits have to be deleted prior to exiting
the ‘with Dagger()’ context.

This code is NOT VALID:
with Dagger(eng):

qb = eng.allocate_qubit()
H | qb # qb is still available!!!

The correct way of handling qubit (de-)allocation is as follows:

with Dagger(eng):
qb = eng.allocate_qubit()
...
del qb # sends deallocate gate (which becomes an allocate)

__init__(engine)
Enter an inverted section.

Parameters engine – Engine which handles the commands (usually MainEngine)

Example (executes an inverse QFT):

with Dagger(eng):
QFT | qubits

class projectq.meta.DirtyQubitTag

Dirty qubit meta tag.

class projectq.meta.LogicalQubitIDTag(logical_qubit_id)
LogicalQubitIDTag for a mapped qubit to annotate a MeasureGate.

logical_qubit_id

Logical qubit id

Type int

__init__(logical_qubit_id)
Initialize a LogicalQubitIDTag object.

class projectq.meta.Loop(engine, num)

Loop n times over an entire code block.

90 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Example

with Loop(eng, 4):
[quantum gates to be executed 4 times]

Warning: If the code in the loop contains allocation of qubits, those qubits have to be deleted prior to exiting
the ‘with Loop()’ context.

This code is NOT VALID:
with Loop(eng, 4):

qb = eng.allocate_qubit()
H | qb # qb is still available!!!

The correct way of handling qubit (de-)allocation is as follows:

with Loop(eng, 4):
qb = eng.allocate_qubit()
...
del qb # sends deallocate gate

__init__(engine, num)

Enter a looped section.

Parameters
• engine – Engine handling the commands (usually MainEngine)

• num (int) – Number of loop iterations

Example

with Loop(eng, 4):
H | qb
Rz(M_PI/3.) | qb

Raises
• TypeError – If number of iterations (num) is not an integer

• ValueError – If number of iterations (num) is not >= 0

class projectq.meta.LoopTag(num)

Loop meta tag.

__init__(num)

Initialize a LoopTag object.

loop_tag_id = 0

projectq.meta.Uncompute(engine)
Uncompute automatically.

3.4. meta 91

projectq Documentation, Release 0.7.2

Example

with Compute(eng):
do_something(qubits)

action(qubits)
Uncompute(eng) # runs inverse of the compute section

class projectq.meta.UncomputeTag

Uncompute meta tag.

projectq.meta.canonical_ctrl_state(ctrl_state, num_qubits)
Return canonical form for control state.

Parameters
• ctrl_state (int,str,CtrlAll) – Initial control state representation

• num_qubits (int) – number of control qubits

Returns Canonical form of control state (currently a string composed of ‘0’ and ‘1’)

Note: In case of integer values for ctrl_state, the least significant bit applies to the first qubit in the qubit register,
e.g. if ctrl_state == 2, its binary representation if ‘10’ with the least significan bit being 0.

This means in particular that the followings are equivalent:

canonical_ctrl_state(6, 3) == canonical_ctrl_state(6, '110')

projectq.meta.drop_engine_after(prev_engine)
Remove an engine from the singly-linked list of engines.

Parameters prev_engine (projectq.cengines.BasicEngine) – The engine just before the en-
gine to drop.

Returns The dropped engine.

Return type Engine

projectq.meta.get_control_count(cmd)
Return the number of control qubits of the command object cmd.

projectq.meta.has_negative_control(cmd)
Return whether a command has negatively controlled qubits.

projectq.meta.insert_engine(prev_engine, engine_to_insert)
Insert an engine into the singly-linked list of engines.

It also sets the correct main_engine for engine_to_insert.

Parameters
• prev_engine (projectq.cengines.BasicEngine) – The engine just before the insertion

point.

• engine_to_insert (projectq.cengines.BasicEngine) – The engine to insert at the
insertion point.

92 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

3.5 ops

The operations collection consists of various default gates and is a work-in-progress, as users start to work with Pro-
jectQ.

projectq.ops._basics Definitions of some of the most basic quantum gates.
projectq.ops._command The apply_command function and the Command class.
projectq.ops._gates Definition of the basic set of quantum gates.
projectq.ops._metagates Definition of some meta gates.
projectq.ops._qaagate Definition of the quantum amplitude amplification gate.
projectq.ops._qftgate Definition of the QFT gate.
projectq.ops._qpegate Definition of the quantum phase estimation gate.
projectq.ops._qubit_operator QubitOperator stores a sum of Pauli operators acting on

qubits.
projectq.ops._shortcuts A few shortcuts for certain gates.
projectq.ops._state_prep Definition of the state preparation gate.
projectq.ops._time_evolution Definition of the time evolution gate.
projectq.ops._uniformly_controlled_rotation Definition of uniformly controlled Ry- and Rz-rotation

gates.
projectq.ops.All alias of projectq.ops._metagates.Tensor
projectq.ops.AllocateDirtyQubitGate() Dirty qubit allocation gate class.
projectq.ops.AllocateQubitGate() Qubit allocation gate class.
projectq.ops.apply_command(cmd) Apply a command.
projectq.ops.BarrierGate() Barrier gate class.
projectq.ops.BasicGate() Base class of all gates.
projectq.ops.BasicMathGate(math_fun) Base class for all math gates.
projectq.ops.BasicPhaseGate(angle) Base class for all phase gates.
projectq.ops.BasicRotationGate(angle) Base class of for all rotation gates.
projectq.ops.C(gate[, n_qubits]) Return n-controlled version of the provided gate.
projectq.ops.ClassicalInstructionGate() Classical instruction gate.
projectq.ops.Command(engine, gate, qubits[, ...]) Class used as a container to store commands.
projectq.ops.ControlledGate(gate[, n]) Controlled version of a gate.
projectq.ops.CRz(angle) Shortcut for C(Rz(angle), n_qubits=1).
projectq.ops.CtrlAll(value) Enum type to initialise the control state of qubits.
projectq.ops.DaggeredGate(gate) Wrapper class allowing to execute the inverse of a gate,

even when it does not define one.
projectq.ops.DeallocateQubitGate() Qubit deallocation gate class.
projectq.ops.EntangleGate() Entangle gate class.
projectq.ops.FastForwardingGate() Base class for fast-forward gates.
projectq.ops.FlipBits(bits_to_flip) Gate for flipping qubits by means of XGates.
projectq.ops.FlushGate() Flush gate (denotes the end of the circuit).
projectq.ops.get_inverse(gate) Return the inverse of a gate.
projectq.ops.HGate() Hadamard gate class.
projectq.ops.IncompatibleControlState Exception thrown when trying to set two incompatible

states for a control qubit.
projectq.ops.is_identity(gate) Return True if the gate is an identity gate.
projectq.ops.MatrixGate([matrix]) A gate class whose instances are defined by a matrix.
projectq.ops.MeasureGate() Measurement gate class (for single qubits).
projectq.ops.NotInvertible Exception thrown when trying to invert a gate which is

not invertable.
continues on next page

3.5. ops 93

projectq Documentation, Release 0.7.2

Table 2 – continued from previous page
projectq.ops.NotMergeable Exception thrown when trying to merge two gates which

are not mergeable.
projectq.ops.Ph (angle) Phase gate (global phase).
projectq.ops.QAA(algorithm, oracle) Quantum Aplitude Amplification gate.
projectq.ops.QFTGate() Quantum Fourier Transform gate.
projectq.ops.QPE(unitary) Quantum Phase Estimation gate.
projectq.ops.QubitOperator([term, coefficient]) A sum of terms acting on qubits, e.g., 0.5 * 'X0 X5' +

0.3 * 'Z1 Z2'.
projectq.ops.R(angle) Phase-shift gate (equivalent to Rz up to a global phase).
projectq.ops.Rx(angle) RotationX gate class.
projectq.ops.Rxx(angle) RotationXX gate class.
projectq.ops.Ry(angle) RotationY gate class.
projectq.ops.Ryy(angle) RotationYY gate class.
projectq.ops.Rz(angle) RotationZ gate class.
projectq.ops.Rzz(angle) RotationZZ gate class.
projectq.ops.SelfInverseGate() Self-inverse basic gate class.
projectq.ops.SGate() S gate class.
projectq.ops.SqrtSwapGate() Square-root Swap gate class.
projectq.ops.SqrtXGate() Square-root X gate class.
projectq.ops.StatePreparation(final_state) Gate for transforming qubits in state |0> to any desired

quantum state.
projectq.ops.SwapGate() Swap gate class (swaps 2 qubits).
projectq.ops.Tensor(gate) Wrapper class allowing to apply a (single-qubit) gate to

every qubit in a quantum register.
projectq.ops.TGate() T gate class.
projectq.ops.TimeEvolution(time, hamiltonian) Gate for time evolution under a Hamiltonian (QubitOp-

erator object).
projectq.ops.UniformlyControlledRy(angles) Uniformly controlled Ry gate as introduced in

arXiv:quant-ph/0312218.
projectq.ops.UniformlyControlledRz(angles) Uniformly controlled Rz gate as introduced in

arXiv:quant-ph/0312218.
projectq.ops.XGate() Pauli-X gate class.
projectq.ops.YGate() Pauli-Y gate class.
projectq.ops.ZGate() Pauli-Z gate class.

3.5.1 Submodules

_basics

Definitions of some of the most basic quantum gates.

Defines the BasicGate class, the base class of all gates, the BasicRotationGate class, the SelfInverseGate, the FastFor-
wardingGate, the ClassicalInstruction gate, and the BasicMathGate class.

Gates overload the | operator to allow the following syntax:

Gate | (qureg1, qureg2, qureg2)
Gate | (qureg, qubit)
Gate | qureg
Gate | qubit
Gate | (qubit,)

94 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

This means that for more than one quantum argument (right side of |), a tuple needs to be made explicitely, while for
one argument it is optional.

class projectq.ops._basics.BasicGate

Base class of all gates. (Don’t use it directly but derive from it).

generate_command(qubits)
Generate a command.

The command object created consists of the gate and the qubits being acted upon.

Parameters qubits – see BasicGate.make_tuple_of_qureg(qubits)

Returns A Command object containing the gate and the qubits.

get_inverse()

Return the inverse gate.

Standard implementation of get_inverse:

Raises NotInvertible – inverse is not implemented

get_merged(other)
Return this gate merged with another gate.

Standard implementation of get_merged:

Raises NotMergeable – merging is not implemented

is_identity()

Return True if the gate is an identity gate. In this base class, always returns False.

static make_tuple_of_qureg(qubits)
Convert quantum input of “gate | quantum input” to internal formatting.

A Command object only accepts tuples of Quregs (list of Qubit objects) as qubits input parameter. However,
with this function we allow the user to use a more flexible syntax:

1) Gate | qubit

2) Gate | [qubit0, qubit1]

3) Gate | qureg

4) Gate | (qubit,)

5) Gate | (qureg, qubit)

where qubit is a Qubit object and qureg is a Qureg object. This function takes the right hand side of | and
transforms it to the correct input parameter of a Command object which is:

1) -> Gate | ([qubit],)

2) -> Gate | ([qubit0, qubit1],)

3) -> Gate | (qureg,)

4) -> Gate | ([qubit],)

5) -> Gate | (qureg, [qubit])

Parameters qubits – a Qubit object, a list of Qubit objects, a Qureg object, or a tuple of Qubit
or Qureg objects (can be mixed).

Returns A tuple containing Qureg (or list of Qubits) objects.

3.5. ops 95

projectq Documentation, Release 0.7.2

Return type Canonical representation (tuple<qureg>)

to_string(symbols)
Return a string representation of the object.

Achieve same function as str() but can be extended for configurable representation

class projectq.ops._basics.BasicMathGate(math_fun)
Base class for all math gates.

It allows efficient emulation by providing a mathematical representation which is given by the concrete gate
which derives from this base class. The AddConstant gate, for example, registers a function of the form

def add(x):
return (x+a,)

upon initialization. More generally, the function takes integers as parameters and returns a tuple / list of outputs,
each entry corresponding to the function input. As an example, consider out-of-place multiplication, which takes
two input registers and adds the result into a third, i.e., (a,b,c) -> (a,b,c+a*b). The corresponding function then
is

def multiply(a,b,c)
return (a,b,c+a*b)

get_math_function(qubits)
Get the math function associated with a BasicMathGate.

Return the math function which corresponds to the action of this math gate, given the input to the gate (a
tuple of quantum registers).

Parameters qubits (tuple<Qureg>) – Qubits to which the math gate is being applied.

Returns Python function describing the action of this gate. (See BasicMathGate.__init__ for an
example).

Return type math_fun (function)

class projectq.ops._basics.BasicPhaseGate(angle)
Base class for all phase gates.

A phase gate has a continuous parameter (the angle), labeled ‘angle’ / self.angle. Its inverse is the same gate
with the negated argument. Phase gates of the same class can be merged by adding the angles. The continuous
parameter is modulo 2 * pi, self.angle is in the interval [0, 2 * pi).

get_inverse()

Return the inverse of this rotation gate (negate the angle, return new object).

get_merged(other)
Return self merged with another gate.

Default implementation handles rotation gate of the same type, where angles are simply added.

Parameters other – Rotation gate of same type.

Raises NotMergeable – For non-rotation gates or rotation gates of different type.

Returns New object representing the merged gates.

96 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

tex_str()

Return the Latex string representation of a BasicPhaseGate.

Returns the class name and the angle as a subscript, i.e.

[CLASSNAME]$_[ANGLE]$

class projectq.ops._basics.BasicRotationGate(angle)
Base class of for all rotation gates.

A rotation gate has a continuous parameter (the angle), labeled ‘angle’ / self.angle. Its inverse is the same gate
with the negated argument. Rotation gates of the same class can be merged by adding the angles. The continuous
parameter is modulo 4 * pi, self.angle is in the interval [0, 4 * pi).

get_inverse()

Return the inverse of this rotation gate (negate the angle, return new object).

get_merged(other)
Return self merged with another gate.

Default implementation handles rotation gate of the same type, where angles are simply added.

Parameters other – Rotation gate of same type.

Raises NotMergeable – For non-rotation gates or rotation gates of different type.

Returns New object representing the merged gates.

is_identity()

Return True if the gate is equivalent to an Identity gate.

tex_str()

Return the Latex string representation of a BasicRotationGate.

Returns the class name and the angle as a subscript, i.e.

[CLASSNAME]$_[ANGLE]$

to_string(symbols=False)
Return the string representation of a BasicRotationGate.

Parameters symbols (bool) – uses the pi character and round the angle for a more user friendly
display if True, full angle written in radian otherwise.

class projectq.ops._basics.ClassicalInstructionGate

Classical instruction gate.

Base class for all gates which are not quantum gates in the typical sense, e.g., measurement, alloca-
tion/deallocation, . . .

class projectq.ops._basics.FastForwardingGate

Base class for fast-forward gates.

Base class for classical instruction gates which require a fast-forward through compiler engines that cache / buffer
gates. Examples include Measure and Deallocate, which both should be executed asap, such that Measurement
results are available and resources are freed, respectively.

Note: The only requirement is that FlushGate commands run the entire circuit. FastForwardingGate objects
can be used but the user cannot expect a measurement result to be available for all back-ends when calling only

3.5. ops 97

projectq Documentation, Release 0.7.2

Measure. E.g., for the IBM Quantum Experience back-end, sending the circuit for each Measure-gate would be
too inefficient, which is why a final

is required before the circuit gets sent through the API.

class projectq.ops._basics.MatrixGate(matrix=None)
A gate class whose instances are defined by a matrix.

Note: Use this gate class only for gates acting on a small numbers of qubits. In general, consider instead using
one of the provided ProjectQ gates or define a new class as this allows the compiler to work symbolically.

Example

gate = MatrixGate([[0, 1], [1, 0]])
gate | qubit

get_inverse()

Return the inverse of this gate.

property matrix

Access to the matrix property of this gate.

exception projectq.ops._basics.NotInvertible

Exception thrown when trying to invert a gate which is not invertable.

This exception is also thrown if the inverse is not implemented (yet).

exception projectq.ops._basics.NotMergeable

Exception thrown when trying to merge two gates which are not mergeable.

This exception is also thrown if the merging is not implemented (yet)).

class projectq.ops._basics.SelfInverseGate

Self-inverse basic gate class.

Automatic implementation of the get_inverse-member function for self-inverse gates.

Example

get_inverse(H) == H, it is a self-inverse gate:
get_inverse(H) | qubit

get_inverse()

Return the inverse of this gate.

98 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

_command

The apply_command function and the Command class.

When a gate is applied to qubits, e.g.,

CNOT | (qubit1, qubit2)

a Command object is generated which represents both the gate, qubits and control qubits. This Command object then
gets sent down the compilation pipeline.

In detail, the Gate object overloads the operator| (magic method __or__) to generate a Command object which stores
the qubits in a canonical order using interchangeable qubit indices defined by the gate to allow the optimizer to cancel
the following two gates

Swap | (qubit1, qubit2)
Swap | (qubit2, qubit1)

The command then gets sent to the MainEngine via the apply wrapper (apply_command).

class projectq.ops._command.Command(engine, gate, qubits, controls=(), tags=(), control_state=CtrlAll.One)
Class used as a container to store commands.

If a gate is applied to qubits, then the gate and qubits are saved in a command object. Qubits are copied into
WeakQubitRefs in order to allow early deallocation (would be kept alive otherwise). WeakQubitRef qubits don’t
send deallocate gate when destructed.

gate

The gate to execute

qubits

Tuple of qubit lists (e.g. Quregs). Interchangeable qubits are stored in a unique order

control_qubits

The Qureg of control qubits in a unique order

engine

The engine (usually: MainEngine)

tags

The list of tag objects associated with this command (e.g., ComputeTag, UncomputeTag, LoopTag, . . .).
tag objects need to support ==, != (__eq__ and __ne__) for comparison as used in e.g. TagRemover. New
tags should always be added to the end of the list. This means that if there are e.g. two LoopTags in a
command, tag[0] is from the inner scope while tag[1] is from the other scope as the other scope receives
the command after the inner scope LoopEngine and hence adds its LoopTag to the end.

all_qubits

A tuple of control_qubits + qubits

add_control_qubits(qubits, state=CtrlAll.One)
Add (additional) control qubits to this command object.

They are sorted to ensure a canonical order. Also Qubit objects are converted to WeakQubitRef objects to
allow garbage collection and thus early deallocation of qubits.

Parameters
• qubits (list of Qubit objects) – List of qubits which control this gate

3.5. ops 99

projectq Documentation, Release 0.7.2

• state (int,str,CtrlAll) – Control state (ie. positive or negative) for the qubits being
added as control qubits.

property all_qubits

Get all qubits (gate and control qubits).

Returns a tuple T where T[0] is a quantum register (a list of WeakQubitRef objects) containing the control
qubits and T[1:] contains the quantum registers to which the gate is applied.

property control_qubits

Return a Qureg of control qubits.

property control_state

Return the state of the control qubits (ie. either positively- or negatively-controlled).

property engine

Return engine to which the qubits belong / on which the gates are executed.

get_inverse()

Get the command object corresponding to the inverse of this command.

Inverts the gate (if possible) and creates a new command object from the result.

Raises NotInvertible – If the gate does not provide an inverse (see BasicGate.get_inverse)

get_merged(other)
Merge this command with another one and return the merged command object.

Parameters other – Other command to merge with this one (self)

Raises NotMergeable – if the gates don’t supply a get_merged()-function or can’t be merged for
other reasons.

property interchangeable_qubit_indices

Return nested list of qubit indices which are interchangeable.

Certain qubits can be interchanged (e.g., the qubit order for a Swap gate). To ensure that only those are
sorted when determining the ordering (see _order_qubits), self.interchangeable_qubit_indices is used.

Example

If we can interchange qubits 0,1 and qubits 3,4,5, then this function returns [[0,1],[3,4,5]]

is_identity()

Evaluate if the gate called in the command object is an identity gate.

Returns True if the gate is equivalent to an Identity gate, False otherwise

property qubits

Qubits stored in a Command object.

to_string(symbols=False)
Get string representation of this Command object.

class projectq.ops._command.CtrlAll(value)
Enum type to initialise the control state of qubits.

One = 1

100 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Zero = 0

exception projectq.ops._command.IncompatibleControlState

Exception thrown when trying to set two incompatible states for a control qubit.

projectq.ops._command.apply_command(cmd)
Apply a command.

Extracts the qubits-owning (target) engine from the Command object and sends the Command to it.

Parameters cmd (Command) – Command to apply

_gates

Definition of the basic set of quantum gates.

Contains definitions of standard gates such as * Hadamard (H) * Pauli-X (X / NOT) * Pauli-Y (Y) * Pauli-Z (Z) * S
and its inverse (S / Sdagger) * T and its inverse (T / Tdagger) * SqrtX gate (SqrtX) * Swap gate (Swap) * SqrtSwap
gate (SqrtSwap) * Entangle (Entangle) * Phase gate (Ph) * Rotation-X (Rx) * Rotation-Y (Ry) * Rotation-Z (Rz) *
Rotation-XX on two qubits (Rxx) * Rotation-YY on two qubits (Ryy) * Rotation-ZZ on two qubits (Rzz) * Phase-shift
(R) * Measurement (Measure)

and meta gates, i.e., * Allocate / Deallocate qubits * Flush gate (end of circuit) * Barrier * FlipBits

projectq.ops._gates.Allocate = <projectq.ops._gates.AllocateQubitGate object>

Shortcut (instance of) projectq.ops.AllocateQubitGate

projectq.ops._gates.AllocateDirty = <projectq.ops._gates.AllocateDirtyQubitGate object>

Shortcut (instance of) projectq.ops.AllocateDirtyQubitGate

class projectq.ops._gates.AllocateDirtyQubitGate

Dirty qubit allocation gate class.

get_inverse()

Return the inverse of this gate.

class projectq.ops._gates.AllocateQubitGate

Qubit allocation gate class.

get_inverse()

Return the inverse of this gate.

projectq.ops._gates.Barrier = <projectq.ops._gates.BarrierGate object>

Shortcut (instance of) projectq.ops.BarrierGate

class projectq.ops._gates.BarrierGate

Barrier gate class.

get_inverse()

Return the inverse of this gate.

projectq.ops._gates.Deallocate = <projectq.ops._gates.DeallocateQubitGate object>

Shortcut (instance of) projectq.ops.DeallocateQubitGate

class projectq.ops._gates.DeallocateQubitGate

Qubit deallocation gate class.

3.5. ops 101

projectq Documentation, Release 0.7.2

get_inverse()

Return the inverse of this gate.

projectq.ops._gates.Entangle = <projectq.ops._gates.EntangleGate object>

Shortcut (instance of) projectq.ops.EntangleGate

class projectq.ops._gates.EntangleGate

Entangle gate class.

(Hadamard on first qubit, followed by CNOTs applied to all other qubits).

class projectq.ops._gates.FlipBits(bits_to_flip)
Gate for flipping qubits by means of XGates.

class projectq.ops._gates.FlushGate

Flush gate (denotes the end of the circuit).

Note: All compiler engines (cengines) which cache/buffer gates are obligated to flush and send all gates to the
next compiler engine (followed by the flush command).

Note: This gate is sent when calling

eng.flush()

on the MainEngine eng.

projectq.ops._gates.H = <projectq.ops._gates.HGate object>

Shortcut (instance of) projectq.ops.HGate

class projectq.ops._gates.HGate

Hadamard gate class.

property matrix

Access to the matrix property of this gate.

projectq.ops._gates.Measure = <projectq.ops._gates.MeasureGate object>

Shortcut (instance of) projectq.ops.MeasureGate

class projectq.ops._gates.MeasureGate

Measurement gate class (for single qubits).

projectq.ops._gates.NOT = <projectq.ops._gates.XGate object>

Shortcut (instance of) projectq.ops.XGate

class projectq.ops._gates.Ph(angle)
Phase gate (global phase).

property matrix

Access to the matrix property of this gate.

class projectq.ops._gates.R(angle)
Phase-shift gate (equivalent to Rz up to a global phase).

property matrix

Access to the matrix property of this gate.

102 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

class projectq.ops._gates.Rx(angle)
RotationX gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops._gates.Rxx(angle)
RotationXX gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops._gates.Ry(angle)
RotationY gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops._gates.Ryy(angle)
RotationYY gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops._gates.Rz(angle)
RotationZ gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops._gates.Rzz(angle)
RotationZZ gate class.

property matrix

Access to the matrix property of this gate.

projectq.ops._gates.S = <projectq.ops._gates.SGate object>

Shortcut (instance of) projectq.ops.SGate

class projectq.ops._gates.SGate

S gate class.

property matrix

Access to the matrix property of this gate.

projectq.ops._gates.Sdag = <projectq.ops._metagates.DaggeredGate object>

Inverse (and shortcut) of projectq.ops.SGate

projectq.ops._gates.Sdagger = <projectq.ops._metagates.DaggeredGate object>

Inverse (and shortcut) of projectq.ops.SGate

projectq.ops._gates.SqrtSwap = <projectq.ops._gates.SqrtSwapGate object>

Shortcut (instance of) projectq.ops.SqrtSwapGate

class projectq.ops._gates.SqrtSwapGate

Square-root Swap gate class.

3.5. ops 103

projectq Documentation, Release 0.7.2

property matrix

Access to the matrix property of this gate.

projectq.ops._gates.SqrtX = <projectq.ops._gates.SqrtXGate object>

Shortcut (instance of) projectq.ops.SqrtXGate

class projectq.ops._gates.SqrtXGate

Square-root X gate class.

property matrix

Access to the matrix property of this gate.

tex_str()

Return the Latex string representation of a SqrtXGate.

projectq.ops._gates.Swap = <projectq.ops._gates.SwapGate object>

Shortcut (instance of) projectq.ops.SwapGate

class projectq.ops._gates.SwapGate

Swap gate class (swaps 2 qubits).

property matrix

Access to the matrix property of this gate.

projectq.ops._gates.T = <projectq.ops._gates.TGate object>

Shortcut (instance of) projectq.ops.TGate

class projectq.ops._gates.TGate

T gate class.

property matrix

Access to the matrix property of this gate.

projectq.ops._gates.Tdag = <projectq.ops._metagates.DaggeredGate object>

Inverse (and shortcut) of projectq.ops.TGate

projectq.ops._gates.Tdagger = <projectq.ops._metagates.DaggeredGate object>

Inverse (and shortcut) of projectq.ops.TGate

projectq.ops._gates.X = <projectq.ops._gates.XGate object>

Shortcut (instance of) projectq.ops.XGate

class projectq.ops._gates.XGate

Pauli-X gate class.

property matrix

Access to the matrix property of this gate.

projectq.ops._gates.Y = <projectq.ops._gates.YGate object>

Shortcut (instance of) projectq.ops.YGate

class projectq.ops._gates.YGate

Pauli-Y gate class.

property matrix

Access to the matrix property of this gate.

104 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

projectq.ops._gates.Z = <projectq.ops._gates.ZGate object>

Shortcut (instance of) projectq.ops.ZGate

class projectq.ops._gates.ZGate

Pauli-Z gate class.

property matrix

Access to the matrix property of this gate.

_metagates

Definition of some meta gates.

Contains meta gates, i.e., * DaggeredGate (Represents the inverse of an arbitrary gate) * ControlledGate (Represents a
controlled version of an arbitrary gate) * Tensor/All (Applies a single qubit gate to all supplied qubits), e.g.,

Example:

Tensor(H) | (qubit1, qubit2) # apply H to qubit #1 and #2

As well as the meta functions * get_inverse (Tries to access the get_inverse member function of a gate and upon failure
returns a DaggeredGate) * C (Creates an n-ary controlled version of an arbitrary gate)

projectq.ops._metagates.All

Shortcut (instance of) projectq.ops.Tensor

projectq.ops._metagates.C(gate, n_qubits=1)
Return n-controlled version of the provided gate.

Parameters
• gate – Gate to turn into its controlled version

• n_qubits – Number of controls (default: 1)

Example

C(NOT) | (c, q) # equivalent to CNOT | (c, q)

exception projectq.ops._metagates.ControlQubitError

Exception thrown when wrong number of control qubits are supplied.

class projectq.ops._metagates.ControlledGate(gate, n=1)
Controlled version of a gate.

Note: Use the meta function C() to create a controlled gate

A wrapper class which enables (multi-) controlled gates. It overloads the __or__-operator, using the first qubits
provided as control qubits. The n control-qubits need to be the first n qubits. They can be in separate quregs.

3.5. ops 105

projectq Documentation, Release 0.7.2

Example

ControlledGate(gate, 2) | (qb0, qb2, qb3) # qb0 & qb2 are controls
C(gate, 2) | (qb0, qb2, qb3) # This is much nicer.
C(gate, 2) | ([qb0,qb2], qb3) # Is equivalent

Note: Use C() rather than ControlledGate, i.e.,

C(X, 2) == Toffoli

get_inverse()

Return inverse of a controlled gate, which is the controlled inverse gate.

class projectq.ops._metagates.DaggeredGate(gate)
Wrapper class allowing to execute the inverse of a gate, even when it does not define one.

If there is a replacement available, then there is also one for the inverse, namely the replacement function run in
reverse, while inverting all gates. This class enables using this emulation automatically.

A DaggeredGate is returned automatically when employing the get_inverse- function on a gate which does not
provide a get_inverse() member function.

Example

with Dagger(eng):
MySpecialGate | qubits

will create a DaggeredGate if MySpecialGate does not implement get_inverse. If there is a decomposition func-
tion available, an auto- replacer engine can automatically replace the inverted gate by a call to the decomposition
function inside a “with Dagger”-statement.

get_inverse()

Return the inverse gate (the inverse of the inverse of a gate is the gate itself).

tex_str()

Return the Latex string representation of a Daggered gate.

class projectq.ops._metagates.Tensor(gate)
Wrapper class allowing to apply a (single-qubit) gate to every qubit in a quantum register.

Allowed syntax is to supply either a qureg or a tuple which contains only one qureg.

Example

Tensor(H) | x # applies H to every qubit in the list of qubits x
Tensor(H) | (x,) # alternative to be consistent with other syntax

get_inverse()

Return the inverse of this tensored gate (which is the tensored inverse of the gate).

106 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

projectq.ops._metagates.get_inverse(gate)
Return the inverse of a gate.

Tries to call gate.get_inverse and, upon failure, creates a DaggeredGate instead.

Parameters gate – Gate of which to get the inverse

Example

get_inverse(H) # returns a Hadamard gate (HGate object)

projectq.ops._metagates.is_identity(gate)
Return True if the gate is an identity gate.

Tries to call gate.is_identity and, upon failure, returns False

Parameters gate – Gate of which to get the inverse

Example

get_inverse(Rx(2*math.pi)) # returns True
get_inverse(Rx(math.pi)) # returns False

_qaagate

Definition of the quantum amplitude amplification gate.

class projectq.ops._qaagate.QAA(algorithm, oracle)
Quantum Aplitude Amplification gate.

(Quick reference https://en.wikipedia.org/wiki/Amplitude_amplification. Complete reference G. Brassard, P.
Hoyer, M. Mosca, A. Tapp (2000) Quantum Amplitude Amplification and Estimation https://arxiv.org/abs/
quant-ph/0005055)

Quantum Amplitude Amplification (QAA) executes the algorithm, but not the final measurement required to
obtain the marked state(s) with high probability. The starting state on wich the QAA algorithm is executed is the
one resulting of aplying the Algorithm on the |0> state.

Example

def func_algorithm(eng,system_qubits):
All(H) | system_qubits

def func_oracle(eng,system_qubits,qaa_ancilla):
This oracle selects the state |010> as the one marked
with Compute(eng):

All(X) | system_qubits[0::2]
with Control(eng, system_qubits):

X | qaa_ancilla
Uncompute(eng)

system_qubits = eng.allocate_qureg(3)
(continues on next page)

3.5. ops 107

https://en.wikipedia.org/wiki/Amplitude_amplification
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/quant-ph/0005055

projectq Documentation, Release 0.7.2

(continued from previous page)

Prepare the qaa_ancilla qubit in the |-> state
qaa_ancilla = eng.allocate_qubit()
X | qaa_ancilla
H | qaa_ancilla

Creates the initial state form the Algorithm
func_algorithm(eng, system_qubits)
Apply Quantum Amplitude Amplification the correct number of times
num_it = int(math.pi/4.*math.sqrt(1 << 3))
with Loop(eng, num_it):

QAA(func_algorithm, func_oracle) | (system_qubits, qaa_ancilla)

All(Measure) | system_qubits

Warning: No qubit allocation/deallocation may take place during the call to the defined Algorithm
func_algorithm

func_algorithm

Algorithm that initialite the state and to be used in the QAA algorithm

func_oracle

The Oracle that marks the state(s) as “good”

system_qubits

the system we are interested on

qaa_ancilla

auxiliary qubit that helps to invert the amplitude of the “good” states

_qftgate

Definition of the QFT gate.

projectq.ops._qftgate.QFT = <projectq.ops._qftgate.QFTGate object>

Shortcut (instance of) projectq.ops.QFTGate

class projectq.ops._qftgate.QFTGate

Quantum Fourier Transform gate.

_qpegate

Definition of the quantum phase estimation gate.

class projectq.ops._qpegate.QPE(unitary)
Quantum Phase Estimation gate.

See setups.decompositions for the complete implementation

108 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

_qubit_operator

QubitOperator stores a sum of Pauli operators acting on qubits.

class projectq.ops._qubit_operator.QubitOperator(term=None, coefficient=1.0)
A sum of terms acting on qubits, e.g., 0.5 * ‘X0 X5’ + 0.3 * ‘Z1 Z2’.

A term is an operator acting on n qubits and can be represented as:

coefficent * local_operator[0] x . . . x local_operator[n-1]

where x is the tensor product. A local operator is a Pauli operator (‘I’, ‘X’, ‘Y’, or ‘Z’) which acts on one qubit.
In math notation a term is, for example, 0.5 * ‘X0 X5’, which means that a Pauli X operator acts on qubit 0 and
5, while the identity operator acts on all other qubits.

A QubitOperator represents a sum of terms acting on qubits and overloads operations for easy manipulation of
these objects by the user.

Note for a QubitOperator to be a Hamiltonian which is a hermitian operator, the coefficients of all terms must be
real.

hamiltonian = 0.5 * QubitOperator('X0 X5') + 0.3 * QubitOperator('Z0')

Our Simulator takes a hermitian QubitOperator to directly calculate the expectation value (see Simula-
tor.get_expectation_value) of this observable.

A hermitian QubitOperator can also be used as input for the TimeEvolution gate.

If the QubitOperator is unitary, i.e., it contains only one term with a coefficient, whose absolute value is 1, then
one can apply it directly to qubits:

eng = projectq.MainEngine()
qureg = eng.allocate_qureg(6)
QubitOperator('X0 X5', 1.j) | qureg # Applies X to qubit 0 and 5 with an additional␣
→˓global phase of 1.j

terms

key: A term represented by a tuple containing all non-trivial local Pauli operators (‘X’, ‘Y’, or ‘Z’). A
non-trivial local Pauli operator is specified by a tuple with the first element being an integer indicating the
qubit on which a non-trivial local operator acts and the second element being a string, either ‘X’, ‘Y’, or ‘Z’,
indicating which non-trivial Pauli operator acts on that qubit. Examples: ((1, ‘X’),) or ((1, ‘X’), (4,’Z’)) or
the identity (). The tuples representing the non-trivial local terms are sorted according to the qubit number
they act on, starting from 0. value: Coefficient of this term as a (complex) float

Type dict

compress(abs_tol=1e-12)
Compress the coefficient of a QubitOperator.

Eliminate all terms with coefficients close to zero and removes imaginary parts of coefficients that are close
to zero.

Parameters abs_tol (float) – Absolute tolerance, must be at least 0.0

get_inverse()

Return the inverse gate of a QubitOperator if applied as a gate.

Raises NotInvertible – Not implemented for QubitOperators which have multiple terms or a
coefficient with absolute value not equal to 1.

3.5. ops 109

projectq Documentation, Release 0.7.2

get_merged(other)
Return this gate merged with another gate.

Standard implementation of get_merged:

Raises NotMergeable – merging is not possible

isclose(other, rel_tol=1e-12, abs_tol=1e-12)
Return True if other (QubitOperator) is close to self.

Comparison is done for each term individually. Return True if the difference between each term in self and
other is less than the relative tolerance w.r.t. either other or self (symmetric test) or if the difference is less
than the absolute tolerance.

Parameters
• other (QubitOperator) – QubitOperator to compare against.

• rel_tol (float) – Relative tolerance, must be greater than 0.0

• abs_tol (float) – Absolute tolerance, must be at least 0.0

exception projectq.ops._qubit_operator.QubitOperatorError

Exception raised when a QubitOperator is instantiated with some invalid data.

_shortcuts

A few shortcuts for certain gates.

These include: * CNOT = C(NOT) * CRz = C(Rz) * Toffoli = C(NOT,2) = C(CNOT)

projectq.ops._shortcuts.CRz(angle)
Shortcut for C(Rz(angle), n_qubits=1).

_state_prep

Definition of the state preparation gate.

class projectq.ops._state_prep.StatePreparation(final_state)
Gate for transforming qubits in state |0> to any desired quantum state.

_time_evolution

Definition of the time evolution gate.

exception projectq.ops._time_evolution.NotHermitianOperatorError

Error raised if an operator is non-hermitian.

class projectq.ops._time_evolution.TimeEvolution(time, hamiltonian)
Gate for time evolution under a Hamiltonian (QubitOperator object).

This gate is the unitary time evolution propagator: exp(-i * H * t), where H is the Hamiltonian of the system and
t is the time. Note that -i factor is stored implicitely.

110 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Example

wavefunction = eng.allocate_qureg(5)
hamiltonian = 0.5 * QubitOperator("X0 Z1 Y5")
Apply exp(-i * H * t) to the wavefunction:
TimeEvolution(time=2.0, hamiltonian=hamiltonian) | wavefunction

time

time t

Type float, int

hamiltonian

hamiltonaian H

Type QubitOperator

get_inverse()

Return the inverse gate.

get_merged(other)
Return self merged with another TimeEvolution gate if possible.

Two TimeEvolution gates are merged if:
1) both have the same terms

2) the proportionality factor for each of the terms must have relative error <= 1e-9 compared to the
proportionality factors of the other terms.

Note: While one could merge gates for which both hamiltonians commute, we are not doing this as in
general the resulting gate would have to be decomposed again.

Note: We are not comparing if terms are proportional to each other with an absolute tolerance. It is up to
the user to remove terms close to zero because we cannot choose a suitable absolute error which works for
everyone. Use, e.g., a decomposition rule for that.

Parameters other – TimeEvolution gate

Raises NotMergeable – If the other gate is not a TimeEvolution gate or hamiltonians are not
suitable for merging.

Returns New TimeEvolution gate equivalent to the two merged gates.

_uniformly_controlled_rotation

Definition of uniformly controlled Ry- and Rz-rotation gates.

class projectq.ops._uniformly_controlled_rotation.UniformlyControlledRy(angles)
Uniformly controlled Ry gate as introduced in arXiv:quant-ph/0312218.

This is an n-qubit gate. There are n-1 control qubits and one target qubit. This gate applies Ry(angles(k)) to the
target qubit if the n-1 control qubits are in the classical state k. As there are 2^(n-1) classical states for the control
qubits, this gate requires 2^(n-1) (potentially different) angle parameters.

3.5. ops 111

projectq Documentation, Release 0.7.2

Example

controls = eng.allocate_qureg(2) target = eng.allocate_qubit() UniformlyControlledRy(angles=[0.1, 0.2, 0.3,
0.4]) | (controls, target)

Note: The first quantum register contains the control qubits. When converting the classical state k of the control
qubits to an integer, we define controls[0] to be the least significant (qu)bit. controls can also be an empty list in
which case the gate corresponds to an Ry.

Parameters angles (list[float]) – Rotation angles. Ry(angles[k]) is applied conditioned on the
control qubits being in state k.

get_inverse()

Return the inverse of this rotation gate (negate the angles, return new object).

get_merged(other)
Return self merged with another gate.

class projectq.ops._uniformly_controlled_rotation.UniformlyControlledRz(angles)
Uniformly controlled Rz gate as introduced in arXiv:quant-ph/0312218.

This is an n-qubit gate. There are n-1 control qubits and one target qubit. This gate applies Rz(angles(k)) to the
target qubit if the n-1 control qubits are in the classical state k. As there are 2^(n-1) classical states for the control
qubits, this gate requires 2^(n-1) (potentially different) angle parameters.

Example

controls = eng.allocate_qureg(2) target = eng.allocate_qubit() UniformlyControlledRz(angles=[0.1, 0.2, 0.3,
0.4]) | (controls, target)

Note: The first quantum register are the contains qubits. When converting the classical state k of the control
qubits to an integer, we define controls[0] to be the least significant (qu)bit. controls can also be an empty list in
which case the gate corresponds to an Rz.

Parameters angles (list[float]) – Rotation angles. Rz(angles[k]) is applied conditioned on the
control qubits being in state k.

get_inverse()

Return the inverse of this rotation gate (negate the angles, return new object).

get_merged(other)
Return self merged with another gate.

112 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

3.5.2 Module contents

ProjectQ module containing all basic gates (operations)

projectq.ops.All

alias of projectq.ops._metagates.Tensor

class projectq.ops.AllocateDirtyQubitGate

Dirty qubit allocation gate class.

get_inverse()

Return the inverse of this gate.

class projectq.ops.AllocateQubitGate

Qubit allocation gate class.

get_inverse()

Return the inverse of this gate.

class projectq.ops.BarrierGate

Barrier gate class.

get_inverse()

Return the inverse of this gate.

class projectq.ops.BasicGate

Base class of all gates. (Don’t use it directly but derive from it).

__init__()

Initialize a basic gate.

Note: Set interchangeable qubit indices! (gate.interchangeable_qubit_indices)

As an example, consider

ExampleGate | (a,b,c,d,e)

where a and b are interchangeable. Then, call this function as follows:

self.set_interchangeable_qubit_indices([[0,1]])

As another example, consider

ExampleGate2 | (a,b,c,d,e)

where a and b are interchangeable and, in addition, c, d, and e are interchangeable among themselves. Then,
call this function as

self.set_interchangeable_qubit_indices([[0,1],[2,3,4]])

__or__(qubits)
Operator| overload which enables the syntax Gate | qubits.

3.5. ops 113

projectq Documentation, Release 0.7.2

Example

1) Gate | qubit

2) Gate | [qubit0, qubit1]

3) Gate | qureg

4) Gate | (qubit,)

5) Gate | (qureg, qubit)

Parameters qubits – a Qubit object, a list of Qubit objects, a Qureg object, or a tuple of Qubit
or Qureg objects (can be mixed).

generate_command(qubits)
Generate a command.

The command object created consists of the gate and the qubits being acted upon.

Parameters qubits – see BasicGate.make_tuple_of_qureg(qubits)

Returns A Command object containing the gate and the qubits.

get_inverse()

Return the inverse gate.

Standard implementation of get_inverse:

Raises NotInvertible – inverse is not implemented

get_merged(other)
Return this gate merged with another gate.

Standard implementation of get_merged:

Raises NotMergeable – merging is not implemented

is_identity()

Return True if the gate is an identity gate. In this base class, always returns False.

static make_tuple_of_qureg(qubits)
Convert quantum input of “gate | quantum input” to internal formatting.

A Command object only accepts tuples of Quregs (list of Qubit objects) as qubits input parameter. However,
with this function we allow the user to use a more flexible syntax:

1) Gate | qubit

2) Gate | [qubit0, qubit1]

3) Gate | qureg

4) Gate | (qubit,)

5) Gate | (qureg, qubit)

where qubit is a Qubit object and qureg is a Qureg object. This function takes the right hand side of | and
transforms it to the correct input parameter of a Command object which is:

1) -> Gate | ([qubit],)

2) -> Gate | ([qubit0, qubit1],)

3) -> Gate | (qureg,)

114 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

4) -> Gate | ([qubit],)

5) -> Gate | (qureg, [qubit])

Parameters qubits – a Qubit object, a list of Qubit objects, a Qureg object, or a tuple of Qubit
or Qureg objects (can be mixed).

Returns A tuple containing Qureg (or list of Qubits) objects.

Return type Canonical representation (tuple<qureg>)

to_string(symbols)
Return a string representation of the object.

Achieve same function as str() but can be extended for configurable representation

class projectq.ops.BasicMathGate(math_fun)
Base class for all math gates.

It allows efficient emulation by providing a mathematical representation which is given by the concrete gate
which derives from this base class. The AddConstant gate, for example, registers a function of the form

def add(x):
return (x+a,)

upon initialization. More generally, the function takes integers as parameters and returns a tuple / list of outputs,
each entry corresponding to the function input. As an example, consider out-of-place multiplication, which takes
two input registers and adds the result into a third, i.e., (a,b,c) -> (a,b,c+a*b). The corresponding function then
is

def multiply(a,b,c)
return (a,b,c+a*b)

__init__(math_fun)
Initialize a BasicMathGate by providing the mathematical function that it implements.

Parameters math_fun (function) – Function which takes as many int values as input, as the
gate takes registers. For each of these values, it then returns the output (i.e., it returns a
list/tuple of output values).

Example

def add(a,b):
return (a,a+b)

super().__init__(add)

If the gate acts on, e.g., fixed point numbers, the number of bits per register is also required in order to
describe the action of such a mathematical gate. For this reason, there is

BasicMathGate.get_math_function(qubits)

which can be overwritten by the gate deriving from BasicMathGate.

3.5. ops 115

projectq Documentation, Release 0.7.2

Example

def get_math_function(self, qubits):
n = len(qubits[0])
scal = 2.**n
def math_fun(a):

return (int(scal * (math.sin(math.pi * a / scal))),)
return math_fun

get_math_function(qubits)
Get the math function associated with a BasicMathGate.

Return the math function which corresponds to the action of this math gate, given the input to the gate (a
tuple of quantum registers).

Parameters qubits (tuple<Qureg>) – Qubits to which the math gate is being applied.

Returns Python function describing the action of this gate. (See BasicMathGate.__init__ for an
example).

Return type math_fun (function)

class projectq.ops.BasicPhaseGate(angle)
Base class for all phase gates.

A phase gate has a continuous parameter (the angle), labeled ‘angle’ / self.angle. Its inverse is the same gate
with the negated argument. Phase gates of the same class can be merged by adding the angles. The continuous
parameter is modulo 2 * pi, self.angle is in the interval [0, 2 * pi).

__init__(angle)
Initialize a basic rotation gate.

Parameters angle (float) – Angle of rotation (saved modulo 2 * pi)

get_inverse()

Return the inverse of this rotation gate (negate the angle, return new object).

get_merged(other)
Return self merged with another gate.

Default implementation handles rotation gate of the same type, where angles are simply added.

Parameters other – Rotation gate of same type.

Raises NotMergeable – For non-rotation gates or rotation gates of different type.

Returns New object representing the merged gates.

tex_str()

Return the Latex string representation of a BasicPhaseGate.

Returns the class name and the angle as a subscript, i.e.

[CLASSNAME]$_[ANGLE]$

class projectq.ops.BasicRotationGate(angle)
Base class of for all rotation gates.

A rotation gate has a continuous parameter (the angle), labeled ‘angle’ / self.angle. Its inverse is the same gate
with the negated argument. Rotation gates of the same class can be merged by adding the angles. The continuous
parameter is modulo 4 * pi, self.angle is in the interval [0, 4 * pi).

116 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

__init__(angle)
Initialize a basic rotation gate.

Parameters angle (float) – Angle of rotation (saved modulo 4 * pi)

get_inverse()

Return the inverse of this rotation gate (negate the angle, return new object).

get_merged(other)
Return self merged with another gate.

Default implementation handles rotation gate of the same type, where angles are simply added.

Parameters other – Rotation gate of same type.

Raises NotMergeable – For non-rotation gates or rotation gates of different type.

Returns New object representing the merged gates.

is_identity()

Return True if the gate is equivalent to an Identity gate.

tex_str()

Return the Latex string representation of a BasicRotationGate.

Returns the class name and the angle as a subscript, i.e.

[CLASSNAME]$_[ANGLE]$

to_string(symbols=False)
Return the string representation of a BasicRotationGate.

Parameters symbols (bool) – uses the pi character and round the angle for a more user friendly
display if True, full angle written in radian otherwise.

projectq.ops.C(gate, n_qubits=1)
Return n-controlled version of the provided gate.

Parameters
• gate – Gate to turn into its controlled version

• n_qubits – Number of controls (default: 1)

Example

C(NOT) | (c, q) # equivalent to CNOT | (c, q)

projectq.ops.CRz(angle)
Shortcut for C(Rz(angle), n_qubits=1).

class projectq.ops.ClassicalInstructionGate

Classical instruction gate.

Base class for all gates which are not quantum gates in the typical sense, e.g., measurement, alloca-
tion/deallocation, . . .

3.5. ops 117

projectq Documentation, Release 0.7.2

class projectq.ops.Command(engine, gate, qubits, controls=(), tags=(), control_state=CtrlAll.One)
Class used as a container to store commands.

If a gate is applied to qubits, then the gate and qubits are saved in a command object. Qubits are copied into
WeakQubitRefs in order to allow early deallocation (would be kept alive otherwise). WeakQubitRef qubits don’t
send deallocate gate when destructed.

gate

The gate to execute

qubits

Tuple of qubit lists (e.g. Quregs). Interchangeable qubits are stored in a unique order

control_qubits

The Qureg of control qubits in a unique order

engine

The engine (usually: MainEngine)

tags

The list of tag objects associated with this command (e.g., ComputeTag, UncomputeTag, LoopTag, . . .).
tag objects need to support ==, != (__eq__ and __ne__) for comparison as used in e.g. TagRemover. New
tags should always be added to the end of the list. This means that if there are e.g. two LoopTags in a
command, tag[0] is from the inner scope while tag[1] is from the other scope as the other scope receives
the command after the inner scope LoopEngine and hence adds its LoopTag to the end.

all_qubits

A tuple of control_qubits + qubits

__init__(engine, gate, qubits, controls=(), tags=(), control_state=CtrlAll.One)
Initialize a Command object.

Note: control qubits (Command.control_qubits) are stored as a list of qubits, and command tags (Com-
mand.tags) as a list of tag-objects. All functions within this class also work if WeakQubitRefs are supplied
instead of normal Qubit objects (see WeakQubitRef).

Parameters
• engine (projectq.cengines.BasicEngine) – engine which created the qubit (mostly

the MainEngine)

• gate (projectq.ops.Gate) – Gate to be executed

• qubits (tuple[Qureg]) – Tuple of quantum registers (to which the gate is applied)

• controls (Qureg|list[Qubit]) – Qubits that condition the command.

• tags (list[object]) – Tags associated with the command.

• control_state (int,str,projectq.meta.CtrlAll) –

add_control_qubits(qubits, state=CtrlAll.One)
Add (additional) control qubits to this command object.

They are sorted to ensure a canonical order. Also Qubit objects are converted to WeakQubitRef objects to
allow garbage collection and thus early deallocation of qubits.

Parameters

118 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

• qubits (list of Qubit objects) – List of qubits which control this gate

• state (int,str,CtrlAll) – Control state (ie. positive or negative) for the qubits being
added as control qubits.

property all_qubits

Get all qubits (gate and control qubits).

Returns a tuple T where T[0] is a quantum register (a list of WeakQubitRef objects) containing the control
qubits and T[1:] contains the quantum registers to which the gate is applied.

property control_qubits

Return a Qureg of control qubits.

property control_state

Return the state of the control qubits (ie. either positively- or negatively-controlled).

property engine

Return engine to which the qubits belong / on which the gates are executed.

get_inverse()

Get the command object corresponding to the inverse of this command.

Inverts the gate (if possible) and creates a new command object from the result.

Raises NotInvertible – If the gate does not provide an inverse (see BasicGate.get_inverse)

get_merged(other)
Merge this command with another one and return the merged command object.

Parameters other – Other command to merge with this one (self)

Raises NotMergeable – if the gates don’t supply a get_merged()-function or can’t be merged for
other reasons.

property interchangeable_qubit_indices

Return nested list of qubit indices which are interchangeable.

Certain qubits can be interchanged (e.g., the qubit order for a Swap gate). To ensure that only those are
sorted when determining the ordering (see _order_qubits), self.interchangeable_qubit_indices is used.

Example

If we can interchange qubits 0,1 and qubits 3,4,5, then this function returns [[0,1],[3,4,5]]

is_identity()

Evaluate if the gate called in the command object is an identity gate.

Returns True if the gate is equivalent to an Identity gate, False otherwise

property qubits

Qubits stored in a Command object.

to_string(symbols=False)
Get string representation of this Command object.

3.5. ops 119

projectq Documentation, Release 0.7.2

class projectq.ops.ControlledGate(gate, n=1)
Controlled version of a gate.

Note: Use the meta function C() to create a controlled gate

A wrapper class which enables (multi-) controlled gates. It overloads the __or__-operator, using the first qubits
provided as control qubits. The n control-qubits need to be the first n qubits. They can be in separate quregs.

Example

ControlledGate(gate, 2) | (qb0, qb2, qb3) # qb0 & qb2 are controls
C(gate, 2) | (qb0, qb2, qb3) # This is much nicer.
C(gate, 2) | ([qb0,qb2], qb3) # Is equivalent

Note: Use C() rather than ControlledGate, i.e.,

C(X, 2) == Toffoli

__init__(gate, n=1)
Initialize a ControlledGate object.

Parameters
• gate – Gate to wrap.

• n (int) – Number of control qubits.

__or__(qubits)
Apply the controlled gate to qubits, using the first n qubits as controls.

Note: The control qubits can be split across the first quregs. However, the n-th control qubit needs to be
the last qubit in a qureg. The following quregs belong to the gate.

Parameters qubits (tuple of lists of Qubit objects) – qubits to which to apply the
gate.

get_inverse()

Return inverse of a controlled gate, which is the controlled inverse gate.

class projectq.ops.CtrlAll(value)
Enum type to initialise the control state of qubits.

One = 1

Zero = 0

class projectq.ops.DaggeredGate(gate)
Wrapper class allowing to execute the inverse of a gate, even when it does not define one.

If there is a replacement available, then there is also one for the inverse, namely the replacement function run in
reverse, while inverting all gates. This class enables using this emulation automatically.

A DaggeredGate is returned automatically when employing the get_inverse- function on a gate which does not
provide a get_inverse() member function.

120 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Example

with Dagger(eng):
MySpecialGate | qubits

will create a DaggeredGate if MySpecialGate does not implement get_inverse. If there is a decomposition func-
tion available, an auto- replacer engine can automatically replace the inverted gate by a call to the decomposition
function inside a “with Dagger”-statement.

__init__(gate)
Initialize a DaggeredGate representing the inverse of the gate ‘gate’.

Parameters gate – Any gate object of which to represent the inverse.

get_inverse()

Return the inverse gate (the inverse of the inverse of a gate is the gate itself).

tex_str()

Return the Latex string representation of a Daggered gate.

class projectq.ops.DeallocateQubitGate

Qubit deallocation gate class.

get_inverse()

Return the inverse of this gate.

class projectq.ops.EntangleGate

Entangle gate class.

(Hadamard on first qubit, followed by CNOTs applied to all other qubits).

class projectq.ops.FastForwardingGate

Base class for fast-forward gates.

Base class for classical instruction gates which require a fast-forward through compiler engines that cache / buffer
gates. Examples include Measure and Deallocate, which both should be executed asap, such that Measurement
results are available and resources are freed, respectively.

Note: The only requirement is that FlushGate commands run the entire circuit. FastForwardingGate objects
can be used but the user cannot expect a measurement result to be available for all back-ends when calling only
Measure. E.g., for the IBM Quantum Experience back-end, sending the circuit for each Measure-gate would be
too inefficient, which is why a final

is required before the circuit gets sent through the API.

class projectq.ops.FlipBits(bits_to_flip)
Gate for flipping qubits by means of XGates.

__init__(bits_to_flip)
Initialize a FlipBits gate.

3.5. ops 121

projectq Documentation, Release 0.7.2

Example

qureg = eng.allocate_qureg(2)
FlipBits([0, 1]) | qureg

Parameters bits_to_flip (list[int]|list[bool]|str|int) – int or array of 0/1,
True/False, or string of 0/1 identifying the qubits to flip. In case of int, the bits to flip are
determined from the binary digits, with the least significant bit corresponding to qureg[0].
If bits_to_flip is negative, exactly all qubits which would not be flipped for the input -
bits_to_flip-1 are flipped, i.e., bits_to_flip=-1 flips all qubits.

__or__(qubits)
Operator| overload which enables the syntax Gate | qubits.

class projectq.ops.FlushGate

Flush gate (denotes the end of the circuit).

Note: All compiler engines (cengines) which cache/buffer gates are obligated to flush and send all gates to the
next compiler engine (followed by the flush command).

Note: This gate is sent when calling

eng.flush()

on the MainEngine eng.

class projectq.ops.HGate

Hadamard gate class.

property matrix

Access to the matrix property of this gate.

exception projectq.ops.IncompatibleControlState

Exception thrown when trying to set two incompatible states for a control qubit.

class projectq.ops.MatrixGate(matrix=None)
A gate class whose instances are defined by a matrix.

Note: Use this gate class only for gates acting on a small numbers of qubits. In general, consider instead using
one of the provided ProjectQ gates or define a new class as this allows the compiler to work symbolically.

122 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

Example

gate = MatrixGate([[0, 1], [1, 0]])
gate | qubit

__init__(matrix=None)
Initialize a MatrixGate object.

Parameters matrix (numpy.matrix) – matrix which defines the gate. Default: None

get_inverse()

Return the inverse of this gate.

property matrix

Access to the matrix property of this gate.

class projectq.ops.MeasureGate

Measurement gate class (for single qubits).

__or__(qubits)
Operator| overload which enables the syntax Gate | qubits.

Previously (ProjectQ <= v0.3.6) MeasureGate/Measure was allowed to be applied to any number of quan-
tum registers. Now the MeasureGate/Measure is strictly a single qubit gate.

Raises RuntimeError – Since ProjectQ v0.6.0 if the gate is applied to multiple qubits.

exception projectq.ops.NotInvertible

Exception thrown when trying to invert a gate which is not invertable.

This exception is also thrown if the inverse is not implemented (yet).

exception projectq.ops.NotMergeable

Exception thrown when trying to merge two gates which are not mergeable.

This exception is also thrown if the merging is not implemented (yet)).

class projectq.ops.Ph(angle)
Phase gate (global phase).

property matrix

Access to the matrix property of this gate.

class projectq.ops.QAA(algorithm, oracle)
Quantum Aplitude Amplification gate.

(Quick reference https://en.wikipedia.org/wiki/Amplitude_amplification. Complete reference G. Brassard, P.
Hoyer, M. Mosca, A. Tapp (2000) Quantum Amplitude Amplification and Estimation https://arxiv.org/abs/
quant-ph/0005055)

Quantum Amplitude Amplification (QAA) executes the algorithm, but not the final measurement required to
obtain the marked state(s) with high probability. The starting state on wich the QAA algorithm is executed is the
one resulting of aplying the Algorithm on the |0> state.

3.5. ops 123

https://en.wikipedia.org/wiki/Amplitude_amplification
https://arxiv.org/abs/quant-ph/0005055
https://arxiv.org/abs/quant-ph/0005055

projectq Documentation, Release 0.7.2

Example

def func_algorithm(eng,system_qubits):
All(H) | system_qubits

def func_oracle(eng,system_qubits,qaa_ancilla):
This oracle selects the state |010> as the one marked
with Compute(eng):

All(X) | system_qubits[0::2]
with Control(eng, system_qubits):

X | qaa_ancilla
Uncompute(eng)

system_qubits = eng.allocate_qureg(3)
Prepare the qaa_ancilla qubit in the |-> state
qaa_ancilla = eng.allocate_qubit()
X | qaa_ancilla
H | qaa_ancilla

Creates the initial state form the Algorithm
func_algorithm(eng, system_qubits)
Apply Quantum Amplitude Amplification the correct number of times
num_it = int(math.pi/4.*math.sqrt(1 << 3))
with Loop(eng, num_it):

QAA(func_algorithm, func_oracle) | (system_qubits, qaa_ancilla)

All(Measure) | system_qubits

Warning: No qubit allocation/deallocation may take place during the call to the defined Algorithm
func_algorithm

func_algorithm

Algorithm that initialite the state and to be used in the QAA algorithm

func_oracle

The Oracle that marks the state(s) as “good”

system_qubits

the system we are interested on

qaa_ancilla

auxiliary qubit that helps to invert the amplitude of the “good” states

__init__(algorithm, oracle)
Initialize a QAA object.

class projectq.ops.QFTGate

Quantum Fourier Transform gate.

class projectq.ops.QPE(unitary)
Quantum Phase Estimation gate.

See setups.decompositions for the complete implementation

124 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

__init__(unitary)
Initialize a QPE gate.

class projectq.ops.QubitOperator(term=None, coefficient=1.0)
A sum of terms acting on qubits, e.g., 0.5 * ‘X0 X5’ + 0.3 * ‘Z1 Z2’.

A term is an operator acting on n qubits and can be represented as:

coefficent * local_operator[0] x . . . x local_operator[n-1]

where x is the tensor product. A local operator is a Pauli operator (‘I’, ‘X’, ‘Y’, or ‘Z’) which acts on one qubit.
In math notation a term is, for example, 0.5 * ‘X0 X5’, which means that a Pauli X operator acts on qubit 0 and
5, while the identity operator acts on all other qubits.

A QubitOperator represents a sum of terms acting on qubits and overloads operations for easy manipulation of
these objects by the user.

Note for a QubitOperator to be a Hamiltonian which is a hermitian operator, the coefficients of all terms must be
real.

hamiltonian = 0.5 * QubitOperator('X0 X5') + 0.3 * QubitOperator('Z0')

Our Simulator takes a hermitian QubitOperator to directly calculate the expectation value (see Simula-
tor.get_expectation_value) of this observable.

A hermitian QubitOperator can also be used as input for the TimeEvolution gate.

If the QubitOperator is unitary, i.e., it contains only one term with a coefficient, whose absolute value is 1, then
one can apply it directly to qubits:

eng = projectq.MainEngine()
qureg = eng.allocate_qureg(6)
QubitOperator('X0 X5', 1.j) | qureg # Applies X to qubit 0 and 5 with an additional␣
→˓global phase of 1.j

terms

key: A term represented by a tuple containing all non-trivial local Pauli operators (‘X’, ‘Y’, or ‘Z’). A
non-trivial local Pauli operator is specified by a tuple with the first element being an integer indicating the
qubit on which a non-trivial local operator acts and the second element being a string, either ‘X’, ‘Y’, or ‘Z’,
indicating which non-trivial Pauli operator acts on that qubit. Examples: ((1, ‘X’),) or ((1, ‘X’), (4,’Z’)) or
the identity (). The tuples representing the non-trivial local terms are sorted according to the qubit number
they act on, starting from 0. value: Coefficient of this term as a (complex) float

Type dict

__init__(term=None, coefficient=1.0)
Initialize a QubitOperator object.

The init function only allows to initialize one term. Additional terms have to be added using += (which is
fast) or using + of two QubitOperator objects:

3.5. ops 125

projectq Documentation, Release 0.7.2

Example

ham = ((QubitOperator('X0 Y3', 0.5)
+ 0.6 * QubitOperator('X0 Y3')))

Equivalently
ham2 = QubitOperator('X0 Y3', 0.5)
ham2 += 0.6 * QubitOperator('X0 Y3')

Note: Adding terms to QubitOperator is faster using += (as this is done by in-place addition). Specifying
the coefficient in the __init__ is faster than by multiplying a QubitOperator with a scalar as calls an out-of-
place multiplication.

Parameters
• coefficient (complex float, optional) – The coefficient of the first term of this

QubitOperator. Default is 1.0.

• term (optional, empy tuple, a tuple of tuples, or a string) –

1) Default is None which means there are no terms in the QubitOperator hence it is the
“zero” Operator

2) An empty tuple means there are no non-trivial Pauli operators acting on the qubits hence
only identities with a coefficient (which by default is 1.0).

3) A sorted tuple of tuples. The first element of each tuple is an integer indicating the qubit
on which a non-trivial local operator acts, starting from zero. The second element of
each tuple is a string, either ‘X’, ‘Y’ or ‘Z’, indicating which local operator acts on that
qubit.

4) A string of the form ‘X0 Z2 Y5’, indicating an X on qubit 0, Z on qubit 2, and Y on qubit
5. The string should be sorted by the qubit number. ‘’ is the identity.

Raises QubitOperatorError – Invalid operators provided to QubitOperator.

__or__(qubits)
Operator| overload which enables the syntax Gate | qubits.

In particular, enable the following syntax:

QubitOperator(...) | qureg
QubitOperator(...) | (qureg,)
QubitOperator(...) | qubit
QubitOperator(...) | (qubit,)

Unlike other gates, this gate is only allowed to be applied to one quantum register or one qubit and only if
the QubitOperator is unitary, i.e., consists of one term with a coefficient whose absolute values is 1.

Example:

eng = projectq.MainEngine()
qureg = eng.allocate_qureg(6)
QubitOperator('X0 X5', 1.j) | qureg # Applies X to qubit 0 and 5

with an additional global
phase of 1.j

126 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

While in the above example the QubitOperator gate is applied to 6 qubits, it only acts non-trivially on the
two qubits qureg[0] and qureg[5]. Therefore, the operator| will create a new rescaled QubitOperator, i.e, it
sends the equivalent of the following new gate to the MainEngine:

QubitOperator('X0 X1', 1.j) | [qureg[0], qureg[5]]

which is only a two qubit gate.

Parameters qubits – one Qubit object, one list of Qubit objects, one Qureg object, or a tuple
of the former three cases.

Raises
• TypeError – If QubitOperator is not unitary or applied to more than one quantum register.

• ValueError – If quantum register does not have enough qubits

compress(abs_tol=1e-12)
Compress the coefficient of a QubitOperator.

Eliminate all terms with coefficients close to zero and removes imaginary parts of coefficients that are close
to zero.

Parameters abs_tol (float) – Absolute tolerance, must be at least 0.0

get_inverse()

Return the inverse gate of a QubitOperator if applied as a gate.

Raises NotInvertible – Not implemented for QubitOperators which have multiple terms or a
coefficient with absolute value not equal to 1.

get_merged(other)
Return this gate merged with another gate.

Standard implementation of get_merged:

Raises NotMergeable – merging is not possible

isclose(other, rel_tol=1e-12, abs_tol=1e-12)
Return True if other (QubitOperator) is close to self.

Comparison is done for each term individually. Return True if the difference between each term in self and
other is less than the relative tolerance w.r.t. either other or self (symmetric test) or if the difference is less
than the absolute tolerance.

Parameters
• other (QubitOperator) – QubitOperator to compare against.

• rel_tol (float) – Relative tolerance, must be greater than 0.0

• abs_tol (float) – Absolute tolerance, must be at least 0.0

class projectq.ops.R(angle)
Phase-shift gate (equivalent to Rz up to a global phase).

property matrix

Access to the matrix property of this gate.

class projectq.ops.Rx(angle)
RotationX gate class.

3.5. ops 127

projectq Documentation, Release 0.7.2

property matrix

Access to the matrix property of this gate.

class projectq.ops.Rxx(angle)
RotationXX gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.Ry(angle)
RotationY gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.Ryy(angle)
RotationYY gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.Rz(angle)
RotationZ gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.Rzz(angle)
RotationZZ gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.SGate

S gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.SelfInverseGate

Self-inverse basic gate class.

Automatic implementation of the get_inverse-member function for self-inverse gates.

Example

get_inverse(H) == H, it is a self-inverse gate:
get_inverse(H) | qubit

get_inverse()

Return the inverse of this gate.

class projectq.ops.SqrtSwapGate

Square-root Swap gate class.

__init__()

Initialize a SqrtSwap gate.

128 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

property matrix

Access to the matrix property of this gate.

class projectq.ops.SqrtXGate

Square-root X gate class.

property matrix

Access to the matrix property of this gate.

tex_str()

Return the Latex string representation of a SqrtXGate.

class projectq.ops.StatePreparation(final_state)
Gate for transforming qubits in state |0> to any desired quantum state.

__init__(final_state)
Initialize a StatePreparation gate.

Example

qureg = eng.allocate_qureg(2)
StatePreparation([0.5, -0.5j, -0.5, 0.5]) | qureg

Note: final_state[k] is taken to be the amplitude of the computational basis state whose string is equal to
the binary representation of k.

Parameters final_state (list[complex]) – wavefunction of the desired quantum state.
len(final_state) must be 2**len(qureg). Must be normalized!

class projectq.ops.SwapGate

Swap gate class (swaps 2 qubits).

__init__()

Initialize a Swap gate.

property matrix

Access to the matrix property of this gate.

class projectq.ops.TGate

T gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.Tensor(gate)
Wrapper class allowing to apply a (single-qubit) gate to every qubit in a quantum register.

Allowed syntax is to supply either a qureg or a tuple which contains only one qureg.

3.5. ops 129

projectq Documentation, Release 0.7.2

Example

Tensor(H) | x # applies H to every qubit in the list of qubits x
Tensor(H) | (x,) # alternative to be consistent with other syntax

__init__(gate)
Initialize a Tensor object for the gate.

__or__(qubits)
Operator| overload which enables the syntax Gate | qubits.

get_inverse()

Return the inverse of this tensored gate (which is the tensored inverse of the gate).

class projectq.ops.TimeEvolution(time, hamiltonian)
Gate for time evolution under a Hamiltonian (QubitOperator object).

This gate is the unitary time evolution propagator: exp(-i * H * t), where H is the Hamiltonian of the system and
t is the time. Note that -i factor is stored implicitely.

Example

wavefunction = eng.allocate_qureg(5)
hamiltonian = 0.5 * QubitOperator("X0 Z1 Y5")
Apply exp(-i * H * t) to the wavefunction:
TimeEvolution(time=2.0, hamiltonian=hamiltonian) | wavefunction

time

time t

Type float, int

hamiltonian

hamiltonaian H

Type QubitOperator

__init__(time, hamiltonian)
Initialize time evolution gate.

Note: The hamiltonian must be hermitian and therefore only terms with real coefficients are allowed.
Coefficients are internally converted to float.

Parameters
• time (float, or int) – time to evolve under (can be negative).

• hamiltonian (QubitOperator) – hamiltonian to evolve under.

Raises
• TypeError – If time is not a numeric type and hamiltonian is not a QubitOperator.

• NotHermitianOperatorError – If the input hamiltonian is not hermitian (only real co-
efficients).

130 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

__or__(qubits)
Operator| overload which enables the syntax Gate | qubits.

In particular, enable the following syntax:

TimeEvolution(...) | qureg
TimeEvolution(...) | (qureg,)
TimeEvolution(...) | qubit
TimeEvolution(...) | (qubit,)

Unlike other gates, this gate is only allowed to be applied to one quantum register or one qubit.

Example: .. code-block:: python

wavefunction = eng.allocate_qureg(5) hamiltonian = QubitOperator(“X1 Y3”, 0.5) TimeEvolu-
tion(time=2.0, hamiltonian=hamiltonian) | wavefunction

While in the above example the TimeEvolution gate is applied to 5 qubits, the hamiltonian of this TimeEvo-
lution gate acts only non-trivially on the two qubits wavefunction[1] and wavefunction[3]. Therefore, the
operator| will rescale the indices in the hamiltonian and sends the equivalent of the following new gate to
the MainEngine:

h = QubitOperator("X0 Y1", 0.5)
TimeEvolution(2.0, h) | [wavefunction[1], wavefunction[3]]

which is only a two qubit gate.

Parameters qubits – one Qubit object, one list of Qubit objects, one Qureg object, or a tuple
of the former three cases.

get_inverse()

Return the inverse gate.

get_merged(other)
Return self merged with another TimeEvolution gate if possible.

Two TimeEvolution gates are merged if:
1) both have the same terms

2) the proportionality factor for each of the terms must have relative error <= 1e-9 compared to the
proportionality factors of the other terms.

Note: While one could merge gates for which both hamiltonians commute, we are not doing this as in
general the resulting gate would have to be decomposed again.

Note: We are not comparing if terms are proportional to each other with an absolute tolerance. It is up to
the user to remove terms close to zero because we cannot choose a suitable absolute error which works for
everyone. Use, e.g., a decomposition rule for that.

Parameters other – TimeEvolution gate

Raises NotMergeable – If the other gate is not a TimeEvolution gate or hamiltonians are not
suitable for merging.

Returns New TimeEvolution gate equivalent to the two merged gates.

3.5. ops 131

projectq Documentation, Release 0.7.2

class projectq.ops.UniformlyControlledRy(angles)
Uniformly controlled Ry gate as introduced in arXiv:quant-ph/0312218.

This is an n-qubit gate. There are n-1 control qubits and one target qubit. This gate applies Ry(angles(k)) to the
target qubit if the n-1 control qubits are in the classical state k. As there are 2^(n-1) classical states for the control
qubits, this gate requires 2^(n-1) (potentially different) angle parameters.

Example

controls = eng.allocate_qureg(2) target = eng.allocate_qubit() UniformlyControlledRy(angles=[0.1, 0.2, 0.3,
0.4]) | (controls, target)

Note: The first quantum register contains the control qubits. When converting the classical state k of the control
qubits to an integer, we define controls[0] to be the least significant (qu)bit. controls can also be an empty list in
which case the gate corresponds to an Ry.

Parameters angles (list[float]) – Rotation angles. Ry(angles[k]) is applied conditioned on the
control qubits being in state k.

__init__(angles)
Construct a UniformlyControlledRy gate.

get_inverse()

Return the inverse of this rotation gate (negate the angles, return new object).

get_merged(other)
Return self merged with another gate.

class projectq.ops.UniformlyControlledRz(angles)
Uniformly controlled Rz gate as introduced in arXiv:quant-ph/0312218.

This is an n-qubit gate. There are n-1 control qubits and one target qubit. This gate applies Rz(angles(k)) to the
target qubit if the n-1 control qubits are in the classical state k. As there are 2^(n-1) classical states for the control
qubits, this gate requires 2^(n-1) (potentially different) angle parameters.

Example

controls = eng.allocate_qureg(2) target = eng.allocate_qubit() UniformlyControlledRz(angles=[0.1, 0.2, 0.3,
0.4]) | (controls, target)

Note: The first quantum register are the contains qubits. When converting the classical state k of the control
qubits to an integer, we define controls[0] to be the least significant (qu)bit. controls can also be an empty list in
which case the gate corresponds to an Rz.

Parameters angles (list[float]) – Rotation angles. Rz(angles[k]) is applied conditioned on the
control qubits being in state k.

132 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

__init__(angles)
Construct a UniformlyControlledRz gate.

get_inverse()

Return the inverse of this rotation gate (negate the angles, return new object).

get_merged(other)
Return self merged with another gate.

class projectq.ops.XGate

Pauli-X gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.YGate

Pauli-Y gate class.

property matrix

Access to the matrix property of this gate.

class projectq.ops.ZGate

Pauli-Z gate class.

property matrix

Access to the matrix property of this gate.

projectq.ops.apply_command(cmd)
Apply a command.

Extracts the qubits-owning (target) engine from the Command object and sends the Command to it.

Parameters cmd (Command) – Command to apply

projectq.ops.get_inverse(gate)
Return the inverse of a gate.

Tries to call gate.get_inverse and, upon failure, creates a DaggeredGate instead.

Parameters gate – Gate of which to get the inverse

Example

get_inverse(H) # returns a Hadamard gate (HGate object)

projectq.ops.is_identity(gate)
Return True if the gate is an identity gate.

Tries to call gate.is_identity and, upon failure, returns False

Parameters gate – Gate of which to get the inverse

3.5. ops 133

projectq Documentation, Release 0.7.2

Example

get_inverse(Rx(2*math.pi)) # returns True
get_inverse(Rx(math.pi)) # returns False

3.6 setups

The setups package contains a collection of setups which can be loaded by the MainEngine. Each setup contains a
get_engine_list function which returns a list of compiler engines:

Example:

import projectq.setups.ibm as ibm_setup
from projectq import MainEngine
eng = MainEngine(engine_list=ibm_setup.get_engine_list())
eng uses the default Simulator backend

The subpackage decompositions contains all the individual decomposition rules which can be given to, e.g., an Au-
toReplacer.

3.6.1 Subpackages

setups.decompositions

The decomposition package is a collection of gate decomposition / replacement rules which can be used by, e.g., the
AutoReplacer engine.

134 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

projectq.setups.decompositions.
amplitudeamplification

Registers a decomposition for quantum amplitude am-
plification.

projectq.setups.decompositions.
arb1qubit2rzandry

Register the Z-Y decomposition for an arbitrary one
qubit gate.

projectq.setups.decompositions.barrier Registers a decomposition rule for barriers.
projectq.setups.decompositions.
carb1qubit2cnotrzandry

Register the decomposition of an controlled arbitary sin-
gle qubit gate.

projectq.setups.decompositions.cnot2cz Registers a decomposition to for a CNOT gate in terms
of CZ and Hadamard.

projectq.setups.decompositions.cnot2rxx Register a decomposition to for a CNOT gate in terms of
Rxx, Rx and Ry gates.

projectq.setups.decompositions.
cnu2toffoliandcu

Register a decomposition rule for multi-controlled gates.

projectq.setups.decompositions.
controlstate

Register a decomposition to replace turn negatively con-
trolled qubits into positively controlled qubits.

projectq.setups.decompositions.crz2cxandrz Registers a decomposition for controlled z-rotation
gates.

projectq.setups.decompositions.entangle Registers a decomposition for the Entangle gate.
projectq.setups.decompositions.globalphase Registers a decomposition rule for global phases.
projectq.setups.decompositions.h2rx Register a decomposition for the H gate into an Ry and

Rx gate.
projectq.setups.decompositions.ph2r Registers a decomposition for the controlled global

phase gate.
projectq.setups.decompositions.
phaseestimation

Registers a decomposition for phase estimation.

projectq.setups.decompositions.
qft2crandhadamard

Registers a decomposition rule for the quantum Fourier
transform.

projectq.setups.decompositions.
qubitop2onequbit

Register a decomposition rule for a unitary QubitOpera-
tor to one qubit gates.

projectq.setups.decompositions.r2rzandph Registers a decomposition rule for the phase-shift gate.
projectq.setups.decompositions.rx2rz Register a decomposition for the Rx gate into an Rz gate

and Hadamard.
projectq.setups.decompositions.ry2rz Register a decomposition for the Ry gate into an Rz and

Rx(pi/2) gate.
projectq.setups.decompositions.rz2rx Registers a decomposition for the Rz gate into an Rx and

Ry(pi/2) or Ry(-pi/2) gate.
projectq.setups.decompositions.
sqrtswap2cnot

Register a decomposition to achieve a SqrtSwap gate.

projectq.setups.decompositions.
stateprep2cnot

Register decomposition for StatePreparation.

projectq.setups.decompositions.swap2cnot Registers a decomposition to achieve a Swap gate.
projectq.setups.decompositions.
time_evolution

Register decomposition for the TimeEvolution gates.

projectq.setups.decompositions.
toffoli2cnotandtgate

Registers a decomposition rule for the Toffoli gate.

projectq.setups.decompositions.
uniformlycontrolledr2cnot

Register decomposition for UnformlyControlledRy and
UnformlyControlledRz.

projectq.setups.decompositions.
all_defined_decomposition_rules

Built-in mutable sequence.

3.6. setups 135

projectq Documentation, Release 0.7.2

Submodules

amplitudeamplification

Registers a decomposition for quantum amplitude amplification.

(Quick reference https://en.wikipedia.org/wiki/Amplitude_amplification. Complete reference G. Brassard, P. Hoyer,
M. Mosca, A. Tapp (2000) Quantum Amplitude Amplification and Estimation https://arxiv.org/abs/quant-ph/0005055)

Quantum Amplitude Amplification (QAA) executes the algorithm, but not the final measurement required to obtain the
marked state(s) with high probability. The starting state on wich the QAA algorithm is executed is the one resulting of
aplying the Algorithm on the |0> state.

Example

def func_algorithm(eng,system_qubits):
All(H) | system_qubits

def func_oracle(eng,system_qubits,qaa_ancilla):
This oracle selects the state |010> as the one marked
with Compute(eng):

All(X) | system_qubits[0::2]
with Control(eng, system_qubits):

X | qaa_ancilla
Uncompute(eng)

system_qubits = eng.allocate_qureg(3)
Prepare the qaa_ancilla qubit in the |-> state
qaa_ancilla = eng.allocate_qubit()
X | qaa_ancilla
H | qaa_ancilla

Creates the initial state form the Algorithm
func_algorithm(eng, system_qubits)
Apply Quantum Amplitude Amplification the correct number of times
num_it = int(math.pi/4.*math.sqrt(1 << 3))
with Loop(eng, num_it):
QAA(func_algorithm, func_oracle) | (system_qubits, qaa_ancilla)

All(Measure) | system_qubits

Warning: No qubit allocation/deallocation may take place during the call to the defined Algorithm
func_algorithm

projectq.setups.decompositions.amplitudeamplification.func_algorithm

Algorithm that initialite the state and to be used in the QAA algorithm

projectq.setups.decompositions.amplitudeamplification.func_oracle

The Oracle that marks the state(s) as “good”

projectq.setups.decompositions.amplitudeamplification.system_qubits

the system we are interested on

136 Chapter 3. Code Documentation

https://en.wikipedia.org/wiki/Amplitude_amplification
https://arxiv.org/abs/quant-ph/0005055

projectq Documentation, Release 0.7.2

projectq.setups.decompositions.amplitudeamplification.qaa_ancilla

auxiliary qubit that helps to invert the amplitude of the “good” states

projectq.setups.decompositions.amplitudeamplification.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

arb1qubit2rzandry

Register the Z-Y decomposition for an arbitrary one qubit gate.

See paper “Elementary gates for quantum computing” by Adriano Barenco et al., arXiv:quant-ph/9503016v1. (Note:
They use different gate definitions!) Or see theorem 4.1 in Nielsen and Chuang.

Decompose an arbitrary one qubit gate U into U = e^(i alpha) Rz(beta) Ry(gamma) Rz(delta). If a gate V is element
of SU(2), i.e., determinant == 1, then V = Rz(beta) Ry(gamma) Rz(delta)

projectq.setups.decompositions.arb1qubit2rzandry.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

barrier

Registers a decomposition rule for barriers.

Deletes all barriers if they are not supported.

projectq.setups.decompositions.barrier.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

carb1qubit2cnotrzandry

Register the decomposition of an controlled arbitary single qubit gate.

See paper “Elementary gates for quantum computing” by Adriano Barenco et al., arXiv:quant-ph/9503016v1. (Note:
They use different gate definitions!) or Nielsen and Chuang chapter 4.3.

projectq.setups.decompositions.carb1qubit2cnotrzandry.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

cnot2cz

Registers a decomposition to for a CNOT gate in terms of CZ and Hadamard.

projectq.setups.decompositions.cnot2cz.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

3.6. setups 137

projectq Documentation, Release 0.7.2

cnot2rxx

Register a decomposition to for a CNOT gate in terms of Rxx, Rx and Ry gates.

projectq.setups.decompositions.cnot2rxx.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>,
<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

cnu2toffoliandcu

Register a decomposition rule for multi-controlled gates.

Implements the decomposition of Nielsen and Chuang (Fig. 4.10) which decomposes a C^n(U) gate into a sequence
of 2 * (n-1) Toffoli gates and one C(U) gate by using (n-1) ancilla qubits and circuit depth of 2n-1.

projectq.setups.decompositions.cnu2toffoliandcu.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

controlstate

Register a decomposition to replace turn negatively controlled qubits into positively controlled qubits.

This achived by applying X gates to selected qubits.

projectq.setups.decompositions.controlstate.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

crz2cxandrz

Registers a decomposition for controlled z-rotation gates.

It uses 2 z-rotations and 2 C^n NOT gates to achieve this gate.

projectq.setups.decompositions.crz2cxandrz.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

entangle

Registers a decomposition for the Entangle gate.

Applies a Hadamard gate to the first qubit and then, conditioned on this first qubit, CNOT gates to all others.

projectq.setups.decompositions.entangle.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

138 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

globalphase

Registers a decomposition rule for global phases.

Deletes global phase gates (which can be ignored).

projectq.setups.decompositions.globalphase.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

h2rx

Register a decomposition for the H gate into an Ry and Rx gate.

projectq.setups.decompositions.h2rx.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>,
<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

ph2r

Registers a decomposition for the controlled global phase gate.

Turns the controlled global phase gate into a (controlled) phase-shift gate. Each time this rule is applied, one control
can be shaved off.

projectq.setups.decompositions.ph2r.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

phaseestimation

Registers a decomposition for phase estimation.

(reference https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm)

The Quantum Phase Estimation (QPE) executes the algorithm up to the inverse QFT included. The following steps
measuring the ancillas and computing the phase should be executed outside of the QPE.

The decomposition uses as ancillas (qpe_ancillas) the first qubit/qureg in the Command and as system qubits teh second
qubit/qureg in the Command.

The unitary operator for which the phase estimation is estimated (unitary) is the gate in Command

3.6. setups 139

https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm

projectq Documentation, Release 0.7.2

Example

Example using a ProjectQ gate

n_qpe_ancillas = 3
qpe_ancillas = eng.allocate_qureg(n_qpe_ancillas)
system_qubits = eng.allocate_qureg(1)
angle = cmath.pi*2.*0.125
U = Ph(angle) # unitary_specfic_to_the_problem()

Apply Quantum Phase Estimation
QPE(U) | (qpe_ancillas, system_qubits)

All(Measure) | qpe_ancillas
Compute the phase from the ancilla measurement
#(https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm)
phasebinlist = [int(q) for q in qpe_ancillas]
phase_in_bin = ''.join(str(j) for j in phasebinlist)
phase_int = int(phase_in_bin,2)
phase = phase_int / (2 ** n_qpe_ancillas)
print (phase)

Example using a function (two_qubit_gate).
Instead of applying QPE on a gate U one could provide a function

def two_qubit_gate(system_q, time):
CNOT | (system_q[0], system_q[1])
Ph(2.0*cmath.pi*(time * 0.125)) | system_q[1]
CNOT | (system_q[0], system_q[1])

n_qpe_ancillas = 3
qpe_ancillas = eng.allocate_qureg(n_qpe_ancillas)
system_qubits = eng.allocate_qureg(2)
X | system_qubits[0]

Apply Quantum Phase Estimation
QPE(two_qubit_gate) | (qpe_ancillas, system_qubits)

All(Measure) | qpe_ancillas
Compute the phase from the ancilla measurement
#(https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm)
phasebinlist = [int(q) for q in qpe_ancillas]
phase_in_bin = ''.join(str(j) for j in phasebinlist)
phase_int = int(phase_in_bin,2)
phase = phase_int / (2 ** n_qpe_ancillas)
print (phase)

projectq.setups.decompositions.phaseestimation.unitary

Unitary Operation either a ProjectQ gate or a function f.

Type BasicGate

Calling the function with the parameters system_qubits

Type Qureg) and time (integer

140 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

i.e. f

Type system_qubits, time

with parameter time.

projectq.setups.decompositions.phaseestimation.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

qft2crandhadamard

Registers a decomposition rule for the quantum Fourier transform.

Decomposes the QFT gate into Hadamard and controlled phase-shift gates (R).

Warning: The final Swaps are not included, as those are simply a re-indexing of quantum registers.

projectq.setups.decompositions.qft2crandhadamard.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

qubitop2onequbit

Register a decomposition rule for a unitary QubitOperator to one qubit gates.

projectq.setups.decompositions.qubitop2onequbit.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

r2rzandph

Registers a decomposition rule for the phase-shift gate.

Decomposes the (controlled) phase-shift gate using z-rotation and a global phase gate.

projectq.setups.decompositions.r2rzandph.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

rx2rz

Register a decomposition for the Rx gate into an Rz gate and Hadamard.

projectq.setups.decompositions.rx2rz.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

3.6. setups 141

projectq Documentation, Release 0.7.2

ry2rz

Register a decomposition for the Ry gate into an Rz and Rx(pi/2) gate.

projectq.setups.decompositions.ry2rz.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

rz2rx

Registers a decomposition for the Rz gate into an Rx and Ry(pi/2) or Ry(-pi/2) gate.

projectq.setups.decompositions.rz2rx.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>,
<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

sqrtswap2cnot

Register a decomposition to achieve a SqrtSwap gate.

projectq.setups.decompositions.sqrtswap2cnot.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

stateprep2cnot

Register decomposition for StatePreparation.

projectq.setups.decompositions.stateprep2cnot.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

swap2cnot

Registers a decomposition to achieve a Swap gate.

Decomposes a Swap gate using 3 CNOT gates, where the one in the middle features as many control qubits as the Swap
gate has control qubits.

projectq.setups.decompositions.swap2cnot.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

142 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

time_evolution

Register decomposition for the TimeEvolution gates.

An exact straight forward decomposition of a TimeEvolution gate is possible if the hamiltonian has only one term or if
all the terms commute with each other in which case one can implement each term individually.

projectq.setups.decompositions.time_evolution.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>,
<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

toffoli2cnotandtgate

Registers a decomposition rule for the Toffoli gate.

Decomposes the Toffoli gate using Hadamard, T, Tdag, and CNOT gates.

projectq.setups.decompositions.toffoli2cnotandtgate.all_defined_decomposition_rules =
[<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

uniformlycontrolledr2cnot

Register decomposition for UnformlyControlledRy and UnformlyControlledRz.

projectq.setups.decompositions.uniformlycontrolledr2cnot.all_defined_decomposition_rules
= [<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>,
<projectq.cengines._replacer._decomposition_rule.DecompositionRule object>]

Decomposition rules

Module contents

3.6.2 Submodules

Each of the submodules contains a setup which can be used to specify the engine_list used by the MainEngine :

projectq.setups._utils Some utility functions common to some setups.
projectq.setups.aqt A setup for AQT trapped ion devices.
projectq.setups.default The default setup which provides an engine_list for the

MainEngine.
projectq.setups.grid A setup to compile to qubits placed in 2-D grid.
projectq.setups.ibm A setup for IBM quantum chips.
projectq.setups.ionq A setup for IonQ trapped ion devices.
projectq.setups.linear A setup to compile to qubits placed in a linear chain or

a circle.
projectq.setups.restrictedgateset Defines a setup to compile to a restricted gate set.
projectq.setups.trapped_ion_decomposer Apply the restricted gate set setup for trapped ion based

quantum computers.

3.6. setups 143

projectq Documentation, Release 0.7.2

_utils

Some utility functions common to some setups.

projectq.setups._utils.get_engine_list_linear_grid_base(mapper, one_qubit_gates='any',
two_qubit_gates=(<projectq.ops._metagates.ControlledGate
object>, <projectq.ops._gates.SwapGate
object>))

Return an engine list to compile to a 2-D grid of qubits.

Note: If you choose a new gate set for which the compiler does not yet have standard rules, it raises an NoGat-
eDecompositionError or a RuntimeError: maximum recursion depth exceeded. . . . Also note that even the gate
sets which work might not yet be optimized. So make sure to double check and potentially extend the decom-
position rules. This implemention currently requires that the one qubit gates must contain Rz and at least one of
{Ry(best), Rx, H} and the two qubit gate must contain CNOT (recommended) or CZ.

Note: Classical instructions gates such as e.g. Flush and Measure are automatically allowed.

Example

get_engine_list(num_rows=2, num_columns=3, one_qubit_gates=(Rz, Ry, Rx, H),
two_qubit_gates=(CNOT,))

Parameters
• num_rows (int) – Number of rows in the grid

• num_columns (int) – Number of columns in the grid.

• one_qubit_gates – “any” allows any one qubit gate, otherwise provide a tuple of the al-
lowed gates. If the gates are instances of a class (e.g. X), it allows all gates which are equal
to it. If the gate is a class (Rz), it allows all instances of this class. Default is “any”

• two_qubit_gates – “any” allows any two qubit gate, otherwise provide a tuple of the al-
lowed gates. If the gates are instances of a class (e.g. CNOT), it allows all gates which are
equal to it. If the gate is a class, it allows all instances of this class. Default is (CNOT, Swap).

Raises TypeError – If input is for the gates is not “any” or a tuple.

Returns A list of suitable compiler engines.

projectq.setups._utils.high_level_gates(eng, cmd)
Remove any MathGates.

projectq.setups._utils.one_and_two_qubit_gates(eng, cmd)
Filter out 1- and 2-qubit gates.

144 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

aqt

A setup for AQT trapped ion devices.

Defines a setup allowing to compile code for the AQT trapped ion devices: ->The 4 qubits device ->The 11 qubits
simulator ->The 11 qubits noisy simulator

It provides the engine_list for the `MainEngine’ based on the requested device. Decompose the circuit into a Rx/Ry/Rxx
gate set that will be translated in the backend in the Rx/Ry/MS gate set.

projectq.setups.aqt.get_engine_list(token=None, device=None)
Return the default list of compiler engine for the AQT plaftorm.

default

The default setup which provides an engine_list for the MainEngine.

It contains LocalOptimizers and an AutoReplacer which uses most of the decompositions rules defined in pro-
jectq.setups.decompositions

projectq.setups.default.get_engine_list()

Return the default list of compiler engine.

grid

A setup to compile to qubits placed in 2-D grid.

It provides the engine_list for the MainEngine. This engine list contains an AutoReplacer with most of the gate de-
compositions of ProjectQ, which are used to decompose a circuit into only two qubit gates and arbitrary single qubit
gates. ProjectQ’s GridMapper is then used to introduce the necessary Swap operations to route interacting qubits next
to each other. This setup allows to choose the final gate set (with some limitations).

projectq.setups.grid.get_engine_list(num_rows, num_columns, one_qubit_gates='any',
two_qubit_gates=(<projectq.ops._metagates.ControlledGate
object>, <projectq.ops._gates.SwapGate object>))

Return an engine list to compile to a 2-D grid of qubits.

Note: If you choose a new gate set for which the compiler does not yet have standard rules, it raises an NoGat-
eDecompositionError or a RuntimeError: maximum recursion depth exceeded. . . . Also note that even the gate
sets which work might not yet be optimized. So make sure to double check and potentially extend the decom-
position rules. This implemention currently requires that the one qubit gates must contain Rz and at least one of
{Ry(best), Rx, H} and the two qubit gate must contain CNOT (recommended) or CZ.

Note: Classical instructions gates such as e.g. Flush and Measure are automatically allowed.

3.6. setups 145

projectq Documentation, Release 0.7.2

Example

get_engine_list(num_rows=2, num_columns=3, one_qubit_gates=(Rz, Ry, Rx, H),
two_qubit_gates=(CNOT,))

Parameters
• num_rows (int) – Number of rows in the grid

• num_columns (int) – Number of columns in the grid.

• one_qubit_gates – “any” allows any one qubit gate, otherwise provide a tuple of the al-
lowed gates. If the gates are instances of a class (e.g. X), it allows all gates which are equal
to it. If the gate is a class (Rz), it allows all instances of this class. Default is “any”

• two_qubit_gates – “any” allows any two qubit gate, otherwise provide a tuple of the al-
lowed gates. If the gates are instances of a class (e.g. CNOT), it allows all gates which are
equal to it. If the gate is a class, it allows all instances of this class. Default is (CNOT, Swap).

Raises TypeError – If input is for the gates is not “any” or a tuple.

Returns A list of suitable compiler engines.

ibm

A setup for IBM quantum chips.

Defines a setup allowing to compile code for the IBM quantum chips: * Any 5 qubit devices * the ibmq online simulator
* the melbourne 15 qubit device

It provides the engine_list for the `MainEngine’ based on the requested device.

Decompose the circuit into a Rx/Ry/Rz/H/CNOT gate set that will be translated in the backend in the U1/U2/U3/CX
gate set.

projectq.setups.ibm.get_engine_list(token=None, device=None)
Return the default list of compiler engine for the IBM QE platform.

projectq.setups.ibm.list2set(coupling_list)
Convert a list() to a set().

ionq

A setup for IonQ trapped ion devices.

Defines a setup allowing to compile code for IonQ trapped ion devices: ->The 11 qubit device ->The 29 qubits simulator

projectq.setups.ionq.get_engine_list(token=None, device=None)
Return the default list of compiler engine for the IonQ platform.

146 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

linear

A setup to compile to qubits placed in a linear chain or a circle.

It provides the engine_list for the MainEngine. This engine list contains an AutoReplacer with most of the gate decom-
positions of ProjectQ, which are used to decompose a circuit into only two qubit gates and arbitrary single qubit gates.
ProjectQ’s LinearMapper is then used to introduce the necessary Swap operations to route interacting qubits next to
each other. This setup allows to choose the final gate set (with some limitations).

projectq.setups.linear.get_engine_list(num_qubits, cyclic=False, one_qubit_gates='any',
two_qubit_gates=(<projectq.ops._metagates.ControlledGate
object>, <projectq.ops._gates.SwapGate object>))

Return an engine list to compile to a linear chain of qubits.

Note: If you choose a new gate set for which the compiler does not yet have standard rules, it raises an NoGat-
eDecompositionError or a RuntimeError: maximum recursion depth exceeded. . . . Also note that even the gate
sets which work might not yet be optimized. So make sure to double check and potentially extend the decom-
position rules. This implemention currently requires that the one qubit gates must contain Rz and at least one of
{Ry(best), Rx, H} and the two qubit gate must contain CNOT (recommended) or CZ.

Note: Classical instructions gates such as e.g. Flush and Measure are automatically allowed.

Example

get_engine_list(num_qubits=10, cyclic=False, one_qubit_gates=(Rz, Ry, Rx, H), two_qubit_gates=(CNOT,))

Parameters
• num_qubits (int) – Number of qubits in the chain

• cyclic (bool) – If a circle or not. Default is False

• one_qubit_gates – “any” allows any one qubit gate, otherwise provide a tuple of the al-
lowed gates. If the gates are instances of a class (e.g. X), it allows all gates which are equal
to it. If the gate is a class (Rz), it allows all instances of this class. Default is “any”

• two_qubit_gates – “any” allows any two qubit gate, otherwise provide a tuple of the al-
lowed gates. If the gates are instances of a class (e.g. CNOT), it allows all gates which are
equal to it. If the gate is a class, it allows all instances of this class. Default is (CNOT, Swap).

Raises TypeError – If input is for the gates is not “any” or a tuple.

Returns A list of suitable compiler engines.

3.6. setups 147

projectq Documentation, Release 0.7.2

restrictedgateset

Defines a setup to compile to a restricted gate set.

It provides the engine_list for the MainEngine. This engine list contains an AutoReplacer with most of the gate de-
compositions of ProjectQ, which are used to decompose a circuit into a restricted gate set (with some limitions on the
choice of gates).

projectq.setups.restrictedgateset.default_chooser(cmd, decomposition_list)
Provide the default chooser function for the AutoReplacer compiler engine.

projectq.setups.restrictedgateset.get_engine_list(one_qubit_gates='any',
two_qubit_gates=(<projectq.ops._metagates.ControlledGate
object>,), other_gates=(),
compiler_chooser=<function default_chooser>)

Return an engine list to compile to a restricted gate set.

Note: If you choose a new gate set for which the compiler does not yet have standard rules, it raises an NoGat-
eDecompositionError or a RuntimeError: maximum recursion depth exceeded. . . . Also note that even the gate
sets which work might not yet be optimized. So make sure to double check and potentially extend the decom-
position rules. This implemention currently requires that the one qubit gates must contain Rz and at least one of
{Ry(best), Rx, H} and the two qubit gate must contain CNOT (recommended) or CZ.

Note: Classical instructions gates such as e.g. Flush and Measure are automatically allowed.

Example

get_engine_list(one_qubit_gates=(Rz, Ry, Rx, H), two_qubit_gates=(CNOT,),
other_gates=(TimeEvolution,))

Parameters
• one_qubit_gates – “any” allows any one qubit gate, otherwise provide a tuple of the al-

lowed gates. If the gates are instances of a class (e.g. X), it allows all gates which are equal
to it. If the gate is a class (Rz), it allows all instances of this class. Default is “any”

• two_qubit_gates – “any” allows any two qubit gate, otherwise provide a tuple of the al-
lowed gates. If the gates are instances of a class (e.g. CNOT), it allows all gates which are
equal to it. If the gate is a class, it allows all instances of this class. Default is (CNOT,).

• other_gates – A tuple of the allowed gates. If the gates are instances of a class (e.g. QFT),
it allows all gates which are equal to it. If the gate is a class, it allows all instances of this
class.

• compiler_chooser – function selecting the decomposition to use in the Autoreplacer en-
gine

Raises TypeError – If input is for the gates is not “any” or a tuple. Also if element within tuple is
not a class or instance of BasicGate (e.g. CRz which is a shortcut function)

Returns A list of suitable compiler engines.

148 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

trapped_ion_decomposer

Apply the restricted gate set setup for trapped ion based quantum computers.

It provides the engine_list for the MainEngine, restricting the gate set to Rx and Ry single qubit gates and the Rxx two
qubit gates.

A decomposition chooser is implemented following the ideas in QUOTE for reducing the number of Ry gates in the
new circuit.

Note: Because the decomposition chooser is only called when a gate has to be decomposed, this reduction will work
better when the entire circuit has to be decomposed. Otherwise, If the circuit has both superconding gates and native
ion trapped gates the decomposed circuit will not be optimal.

projectq.setups.trapped_ion_decomposer.chooser_Ry_reducer(cmd, decomposition_list)
Choose the decomposition to maximise Ry cancellations.

Choose the decomposition so as to maximise Ry cancellations, based on the previous decomposition used for
the given qubit.

Note: Classical instructions gates e.g. Flush and Measure are automatically allowed.

Returns A decomposition object from the decomposition_list.

projectq.setups.trapped_ion_decomposer.get_engine_list()

Return an engine list compiling code into a trapped ion based compiled circuit code.

Note:
• Classical instructions gates such as e.g. Flush and Measure are automatically allowed.

• The restricted gate set engine does not work with Rxx gates, as ProjectQ will by default bounce back and
forth between Cz gates and Cx gates. An appropriate decomposition chooser needs to be used!

Returns A list of suitable compiler engines.

3.6.3 Module contents

ProjectQ module containing the basic setups for ProjectQ as well as the decomposition rules

3.7 types

The types package contains quantum types such as Qubit, Qureg, and WeakQubitRef. With further development of the
math library, also quantum integers, quantum fixed point numbers etc. will be added.

3.7. types 149

projectq Documentation, Release 0.7.2

projectq.types._qubit Definition of BasicQubit, Qubit, WeakQubit and Qureg
classes.

projectq.types.BasicQubit(engine, idx) BasicQubit objects represent qubits.
projectq.types.Qubit(engine, idx) Qubit class.
projectq.types.Qureg([iterable]) Quantum register class.
projectq.types.WeakQubitRef (engine, idx) WeakQubitRef objects are used inside the Command ob-

ject.

3.7.1 Submodules

_qubit

Definition of BasicQubit, Qubit, WeakQubit and Qureg classes.

A Qureg represents a list of Qubit or WeakQubit objects. A Qubit represents a (logical-level) qubit with a unique index
provided by the MainEngine. Qubit objects are automatically deallocated if they go out of scope and intented to be
used within Qureg objects in user code.

Example

from projectq import MainEngine
eng = MainEngine()
qubit = eng.allocate_qubit()

qubit is a Qureg of size 1 with one Qubit object which is deallocated once qubit goes out of scope.

WeakQubit are used inside the Command object and are not automatically deallocated.

class projectq.types._qubit.BasicQubit(engine, idx)
BasicQubit objects represent qubits.

They have an id and a reference to the owning engine.

class projectq.types._qubit.Qubit(engine, idx)
Qubit class.

Represents a (logical-level) qubit with a unique index provided by the MainEngine. Once the qubit goes out of
scope (and is garbage-collected), it deallocates itself automatically, allowing automatic resource management.

Thus the qubit is not copyable; only returns a reference to the same object.

class projectq.types._qubit.Qureg(iterable=(), /)
Quantum register class.

Simplifies accessing measured values for single-qubit registers (no []- access necessary) and enables pretty-
printing of general quantum registers (call Qureg.__str__(qureg)).

property engine

Return owning engine.

class projectq.types._qubit.WeakQubitRef(engine, idx)
WeakQubitRef objects are used inside the Command object.

Qubits feature automatic deallocation when destroyed. WeakQubitRefs, on the other hand, do not share this
feature, allowing to copy them and pass them along the compiler pipeline, while the actual qubit objects may be

150 Chapter 3. Code Documentation

projectq Documentation, Release 0.7.2

garbage-collected (and, thus, cleaned up early). Otherwise there is no difference between a WeakQubitRef and
a Qubit object.

3.7.2 Module contents

ProjectQ module containing all basic types

class projectq.types.BasicQubit(engine, idx)
BasicQubit objects represent qubits.

They have an id and a reference to the owning engine.

__init__(engine, idx)
Initialize a BasicQubit object.

Parameters
• engine – Owning engine / engine that created the qubit

• idx – Unique index of the qubit referenced by this qubit

class projectq.types.Qubit(engine, idx)
Qubit class.

Represents a (logical-level) qubit with a unique index provided by the MainEngine. Once the qubit goes out of
scope (and is garbage-collected), it deallocates itself automatically, allowing automatic resource management.

Thus the qubit is not copyable; only returns a reference to the same object.

class projectq.types.Qureg(iterable=(), /)
Quantum register class.

Simplifies accessing measured values for single-qubit registers (no []- access necessary) and enables pretty-
printing of general quantum registers (call Qureg.__str__(qureg)).

property engine

Return owning engine.

class projectq.types.WeakQubitRef(engine, idx)
WeakQubitRef objects are used inside the Command object.

Qubits feature automatic deallocation when destroyed. WeakQubitRefs, on the other hand, do not share this
feature, allowing to copy them and pass them along the compiler pipeline, while the actual qubit objects may be
garbage-collected (and, thus, cleaned up early). Otherwise there is no difference between a WeakQubitRef and
a Qubit object.

3.7. types 151

projectq Documentation, Release 0.7.2

152 Chapter 3. Code Documentation

PYTHON MODULE INDEX

p
projectq.backends, 24
projectq.backends._aqt, 19
projectq.backends._awsbraket, 19
projectq.backends._circuits, 19
projectq.backends._exceptions, 19
projectq.backends._ibm, 19
projectq.backends._ionq, 20
projectq.backends._printer, 21
projectq.backends._resource, 21
projectq.backends._sim, 22
projectq.backends._unitary, 22
projectq.cengines, 51
projectq.cengines._basicmapper, 40
projectq.cengines._basics, 41
projectq.cengines._cmdmodifier, 42
projectq.cengines._ibm5qubitmapper, 43
projectq.cengines._linearmapper, 43
projectq.cengines._main, 45
projectq.cengines._manualmapper, 47
projectq.cengines._optimize, 47
projectq.cengines._replacer, 48
projectq.cengines._swapandcnotflipper, 48
projectq.cengines._tagremover, 48
projectq.cengines._testengine, 49
projectq.cengines._twodmapper, 49
projectq.libs, 80
projectq.libs.hist, 80
projectq.libs.math, 74
projectq.libs.math._constantmath, 65
projectq.libs.math._default_rules, 66
projectq.libs.math._gates, 66
projectq.libs.math._quantummath, 69
projectq.libs.revkit, 78
projectq.libs.revkit._control_function, 77
projectq.libs.revkit._permutation, 77
projectq.libs.revkit._phase, 78
projectq.libs.revkit._utils, 78
projectq.meta, 88
projectq.meta._compute, 81
projectq.meta._control, 84
projectq.meta._dagger, 85

projectq.meta._dirtyqubit, 85
projectq.meta._exceptions, 86
projectq.meta._logicalqubit, 86
projectq.meta._loop, 86
projectq.meta._util, 87
projectq.ops, 113
projectq.ops._basics, 94
projectq.ops._command, 99
projectq.ops._gates, 101
projectq.ops._metagates, 105
projectq.ops._qaagate, 107
projectq.ops._qftgate, 108
projectq.ops._qpegate, 108
projectq.ops._qubit_operator, 109
projectq.ops._shortcuts, 110
projectq.ops._state_prep, 110
projectq.ops._time_evolution, 110
projectq.ops._uniformly_controlled_rotation,

111
projectq.setups, 149
projectq.setups._utils, 144
projectq.setups.aqt, 145
projectq.setups.decompositions, 143
projectq.setups.decompositions.amplitudeamplification,

136
projectq.setups.decompositions.arb1qubit2rzandry,

137
projectq.setups.decompositions.barrier, 137
projectq.setups.decompositions.carb1qubit2cnotrzandry,

137
projectq.setups.decompositions.cnot2cz, 137
projectq.setups.decompositions.cnot2rxx, 138
projectq.setups.decompositions.cnu2toffoliandcu,

138
projectq.setups.decompositions.controlstate,

138
projectq.setups.decompositions.crz2cxandrz,

138
projectq.setups.decompositions.entangle, 138
projectq.setups.decompositions.globalphase,

139
projectq.setups.decompositions.h2rx, 139

153

projectq Documentation, Release 0.7.2

projectq.setups.decompositions.ph2r, 139
projectq.setups.decompositions.phaseestimation,

139
projectq.setups.decompositions.qft2crandhadamard,

141
projectq.setups.decompositions.qubitop2onequbit,

141
projectq.setups.decompositions.r2rzandph, 141
projectq.setups.decompositions.rx2rz, 141
projectq.setups.decompositions.ry2rz, 142
projectq.setups.decompositions.rz2rx, 142
projectq.setups.decompositions.sqrtswap2cnot,

142
projectq.setups.decompositions.stateprep2cnot,

142
projectq.setups.decompositions.swap2cnot, 142
projectq.setups.decompositions.time_evolution,

143
projectq.setups.decompositions.toffoli2cnotandtgate,

143
projectq.setups.decompositions.uniformlycontrolledr2cnot,

143
projectq.setups.default, 145
projectq.setups.grid, 145
projectq.setups.ibm, 146
projectq.setups.ionq, 146
projectq.setups.linear, 147
projectq.setups.restrictedgateset, 148
projectq.setups.trapped_ion_decomposer, 149
projectq.types, 151
projectq.types._qubit, 150

154 Python Module Index

INDEX

Symbols
__init__() (projectq.backends.AQTBackend method),

24
__init__() (projectq.backends.AWSBraketBackend

method), 25
__init__() (projectq.backends.CircuitDrawer method),

26
__init__() (projectq.backends.CircuitDrawerMatplotlib

method), 27
__init__() (projectq.backends.ClassicalSimulator

method), 29
__init__() (projectq.backends.CommandPrinter

method), 30
__init__() (projectq.backends.IBMBackend method),

31
__init__() (projectq.backends.IonQBackend method),

32
__init__() (projectq.backends.ResourceCounter

method), 33
__init__() (projectq.backends.Simulator method), 34
__init__() (projectq.backends.UnitarySimulator

method), 38
__init__() (projectq.cengines.AutoReplacer method),

51
__init__() (projectq.cengines.BasicEngine method),

52
__init__() (projectq.cengines.BasicMapperEngine

method), 53
__init__() (projectq.cengines.CommandModifier

method), 53
__init__() (projectq.cengines.CompareEngine

method), 54
__init__() (projectq.cengines.DecompositionRule

method), 54
__init__() (projectq.cengines.DecompositionRuleSet

method), 55
__init__() (projectq.cengines.DummyEngine method),

55
__init__() (projectq.cengines.ForwarderEngine

method), 55
__init__() (projectq.cengines.GridMapper method),

56

__init__() (projectq.cengines.IBM5QubitMapper
method), 57

__init__() (projectq.cengines.InstructionFilter
method), 58

__init__() (projectq.cengines.LastEngineException
method), 58

__init__() (projectq.cengines.LinearMapper method),
59

__init__() (projectq.cengines.LocalOptimizer
method), 60

__init__() (projectq.cengines.MainEngine method), 61
__init__() (projectq.cengines.ManualMapper

method), 63
__init__() (projectq.cengines.SwapAndCNOTFlipper

method), 64
__init__() (projectq.cengines.TagRemover method), 64
__init__() (projectq.libs.math.AddConstant method),

74
__init__() (projectq.libs.math.AddConstantModN

method), 75
__init__() (projectq.libs.math.MultiplyByConstantModN

method), 75
__init__() (projectq.libs.revkit.ControlFunctionOracle

method), 78
__init__() (projectq.libs.revkit.PermutationOracle

method), 79
__init__() (projectq.libs.revkit.PhaseOracle method),

80
__init__() (projectq.meta.Compute method), 88
__init__() (projectq.meta.Control method), 89
__init__() (projectq.meta.CustomUncompute method),

89
__init__() (projectq.meta.Dagger method), 90
__init__() (projectq.meta.LogicalQubitIDTag

method), 90
__init__() (projectq.meta.Loop method), 91
__init__() (projectq.meta.LoopTag method), 91
__init__() (projectq.ops.BasicGate method), 113
__init__() (projectq.ops.BasicMathGate method), 115
__init__() (projectq.ops.BasicPhaseGate method), 116
__init__() (projectq.ops.BasicRotationGate method),

116

155

projectq Documentation, Release 0.7.2

__init__() (projectq.ops.Command method), 118
__init__() (projectq.ops.ControlledGate method), 120
__init__() (projectq.ops.DaggeredGate method), 121
__init__() (projectq.ops.FlipBits method), 121
__init__() (projectq.ops.MatrixGate method), 123
__init__() (projectq.ops.QAA method), 124
__init__() (projectq.ops.QPE method), 124
__init__() (projectq.ops.QubitOperator method), 125
__init__() (projectq.ops.SqrtSwapGate method), 128
__init__() (projectq.ops.StatePreparation method),

129
__init__() (projectq.ops.SwapGate method), 129
__init__() (projectq.ops.Tensor method), 130
__init__() (projectq.ops.TimeEvolution method), 130
__init__() (projectq.ops.UniformlyControlledRy

method), 132
__init__() (projectq.ops.UniformlyControlledRz

method), 132
__init__() (projectq.types.BasicQubit method), 151
__or__() (projectq.libs.revkit.ControlFunctionOracle

method), 79
__or__() (projectq.libs.revkit.PermutationOracle

method), 79
__or__() (projectq.libs.revkit.PhaseOracle method), 80
__or__() (projectq.ops.BasicGate method), 113
__or__() (projectq.ops.ControlledGate method), 120
__or__() (projectq.ops.FlipBits method), 122
__or__() (projectq.ops.MeasureGate method), 123
__or__() (projectq.ops.QubitOperator method), 126
__or__() (projectq.ops.Tensor method), 130
__or__() (projectq.ops.TimeEvolution method), 130

A
active_qubits (projectq.cengines._main.MainEngine

attribute), 45
active_qubits (projectq.cengines.MainEngine at-

tribute), 61
add_constant() (in module pro-

jectq.libs.math._constantmath), 65
add_constant_modN() (in module pro-

jectq.libs.math._constantmath), 65
add_control_qubits() (pro-

jectq.ops._command.Command method),
99

add_control_qubits() (projectq.ops.Command
method), 118

add_decomposition_rule() (pro-
jectq.cengines.DecompositionRuleSet method),
55

add_decomposition_rules() (pro-
jectq.cengines.DecompositionRuleSet method),
55

add_quantum() (in module pro-
jectq.libs.math._quantummath), 69

AddConstant (class in projectq.libs.math), 74
AddConstant (class in projectq.libs.math._gates), 66
AddConstantModN (class in projectq.libs.math), 74
AddConstantModN (class in projectq.libs.math._gates),

66
AddQuantumGate (class in projectq.libs.math._gates), 67
All (in module projectq.ops), 113
All (in module projectq.ops._metagates), 105
all_defined_decomposition_rules (in module pro-

jectq.setups.decompositions.amplitudeamplification),
137

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.arb1qubit2rzandry),
137

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.barrier), 137

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.carb1qubit2cnotrzandry),
137

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.cnot2cz), 137

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.cnot2rxx), 138

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.cnu2toffoliandcu),
138

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.controlstate), 138

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.crz2cxandrz), 138

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.entangle), 138

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.globalphase), 139

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.h2rx), 139

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.ph2r), 139

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.phaseestimation),
141

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.qft2crandhadamard),
141

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.qubitop2onequbit),
141

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.r2rzandph), 141

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.rx2rz), 141

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.ry2rz), 142

all_defined_decomposition_rules (in module pro-

156 Index

projectq Documentation, Release 0.7.2

jectq.setups.decompositions.rz2rx), 142
all_defined_decomposition_rules (in module pro-

jectq.setups.decompositions.sqrtswap2cnot),
142

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.stateprep2cnot),
142

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.swap2cnot), 142

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.time_evolution),
143

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.toffoli2cnotandtgate),
143

all_defined_decomposition_rules (in module pro-
jectq.setups.decompositions.uniformlycontrolledr2cnot),
143

all_qubits (projectq.ops._command.Command at-
tribute), 99

all_qubits (projectq.ops._command.Command prop-
erty), 100

all_qubits (projectq.ops.Command attribute), 118
all_qubits (projectq.ops.Command property), 119
Allocate (in module projectq.ops._gates), 101
allocate_qubit() (pro-

jectq.cengines._basics.BasicEngine method),
41

allocate_qubit() (projectq.cengines.BasicEngine
method), 52

allocate_qureg() (pro-
jectq.cengines._basics.BasicEngine method),
41

allocate_qureg() (projectq.cengines.BasicEngine
method), 52

AllocateDirty (in module projectq.ops._gates), 101
AllocateDirtyQubitGate (class in projectq.ops), 113
AllocateDirtyQubitGate (class in pro-

jectq.ops._gates), 101
AllocateQubitGate (class in projectq.ops), 113
AllocateQubitGate (class in projectq.ops._gates), 101
apply_command() (in module projectq.ops), 133
apply_command() (in module projectq.ops._command),

101
apply_qubit_operator() (pro-

jectq.backends.Simulator method), 34
AQTBackend (class in projectq.backends), 24
AutoReplacer (class in projectq.cengines), 51
AWSBraketBackend (class in projectq.backends), 25
AWSBraketBackend (class in pro-

jectq.backends._awsbraket), 19

B
backend (projectq.cengines._main.MainEngine at-

tribute), 45
backend (projectq.cengines.MainEngine attribute), 61
Barrier (in module projectq.ops._gates), 101
BarrierGate (class in projectq.ops), 113
BarrierGate (class in projectq.ops._gates), 101
BasicEngine (class in projectq.cengines), 51
BasicEngine (class in projectq.cengines._basics), 41
BasicGate (class in projectq.ops), 113
BasicGate (class in projectq.ops._basics), 95
BasicMapperEngine (class in projectq.cengines), 53
BasicMapperEngine (class in pro-

jectq.cengines._basicmapper), 40
BasicMathGate (class in projectq.ops), 115
BasicMathGate (class in projectq.ops._basics), 96
BasicPhaseGate (class in projectq.ops), 116
BasicPhaseGate (class in projectq.ops._basics), 96
BasicQubit (class in projectq.types), 151
BasicQubit (class in projectq.types._qubit), 150
BasicRotationGate (class in projectq.ops), 116
BasicRotationGate (class in projectq.ops._basics), 97

C
C() (in module projectq.ops), 117
C() (in module projectq.ops._metagates), 105
cache_cmd() (projectq.cengines._testengine.CompareEngine

method), 49
cache_cmd() (projectq.cengines.CompareEngine

method), 54
canonical_ctrl_state() (in module projectq.meta),

92
canonical_ctrl_state() (in module pro-

jectq.meta._control), 84
cheat() (projectq.backends.Simulator method), 35
chooser_Ry_reducer() (in module pro-

jectq.setups.trapped_ion_decomposer), 149
CircuitDrawer (class in projectq.backends), 25
CircuitDrawerMatplotlib (class in pro-

jectq.backends), 27
ClassicalInstructionGate (class in projectq.ops),

117
ClassicalInstructionGate (class in pro-

jectq.ops._basics), 97
ClassicalSimulator (class in projectq.backends), 28
collapse_wavefunction() (pro-

jectq.backends.Simulator method), 35
Command (class in projectq.ops), 117
Command (class in projectq.ops._command), 99
CommandModifier (class in projectq.cengines), 53
CommandModifier (class in pro-

jectq.cengines._cmdmodifier), 42
CommandPrinter (class in projectq.backends), 30
CommandPrinter (class in projectq.backends._printer),

21

Index 157

projectq Documentation, Release 0.7.2

comparator() (in module pro-
jectq.libs.math._quantummath), 70

ComparatorQuantumGate (class in pro-
jectq.libs.math._gates), 67

CompareEngine (class in projectq.cengines), 54
CompareEngine (class in projectq.cengines._testengine),

49
compress() (projectq.ops._qubit_operator.QubitOperator

method), 109
compress() (projectq.ops.QubitOperator method), 127
Compute (class in projectq.meta), 88
Compute (class in projectq.meta._compute), 81
ComputeEngine (class in projectq.meta._compute), 82
ComputeTag (class in projectq.meta), 89
ComputeTag (class in projectq.meta._compute), 83
Control (class in projectq.meta), 89
Control (class in projectq.meta._control), 84
control_qubits (projectq.ops._command.Command

attribute), 99
control_qubits (projectq.ops._command.Command

property), 100
control_qubits (projectq.ops.Command attribute),

118
control_qubits (projectq.ops.Command property),

119
control_state (projectq.ops._command.Command

property), 100
control_state (projectq.ops.Command property), 119
ControlEngine (class in projectq.meta._control), 84
ControlFunctionOracle (class in projectq.libs.revkit),

78
ControlFunctionOracle (class in pro-

jectq.libs.revkit._control_function), 77
ControlledGate (class in projectq.ops), 119
ControlledGate (class in projectq.ops._metagates), 105
ControlQubitError, 105
CRz() (in module projectq.ops), 117
CRz() (in module projectq.ops._shortcuts), 110
CtrlAll (class in projectq.ops), 120
CtrlAll (class in projectq.ops._command), 100
current_mapping (pro-

jectq.cengines._basicmapper.BasicMapperEngine
property), 40

current_mapping (pro-
jectq.cengines._basicmapper.BasicMapperEngine.self
attribute), 40

current_mapping (pro-
jectq.cengines._linearmapper.LinearMapper
attribute), 43

current_mapping (pro-
jectq.cengines._twodmapper.GridMapper
attribute), 50

current_mapping (pro-
jectq.cengines._twodmapper.GridMapper

property), 50
current_mapping (pro-

jectq.cengines.BasicMapperEngine property),
53

current_mapping (pro-
jectq.cengines.BasicMapperEngine.self at-
tribute), 53

current_mapping (projectq.cengines.GridMapper at-
tribute), 56

current_mapping (projectq.cengines.GridMapper
property), 57

current_mapping (projectq.cengines.LinearMapper at-
tribute), 59

CustomUncompute (class in projectq.meta), 89
CustomUncompute (class in projectq.meta._compute), 83
cyclic (projectq.cengines._linearmapper.LinearMapper

attribute), 43
cyclic (projectq.cengines.LinearMapper attribute), 59

D
Dagger (class in projectq.meta), 89
Dagger (class in projectq.meta._dagger), 85
DaggeredGate (class in projectq.ops), 120
DaggeredGate (class in projectq.ops._metagates), 106
DaggerEngine (class in projectq.meta._dagger), 85
Deallocate (in module projectq.ops._gates), 101
deallocate_qubit() (pro-

jectq.cengines._basics.BasicEngine method),
41

deallocate_qubit() (projectq.cengines.BasicEngine
method), 52

DeallocateQubitGate (class in projectq.ops), 121
DeallocateQubitGate (class in projectq.ops._gates),

101
DecompositionRule (class in projectq.cengines), 54
DecompositionRuleSet (class in projectq.cengines), 54
default_chooser() (in module pro-

jectq.setups.restrictedgateset), 148
depth_of_dag (projectq.backends._resource.ResourceCounter

property), 22
depth_of_dag (projectq.backends.ResourceCounter

property), 33
depth_of_swaps (pro-

jectq.cengines._linearmapper.LinearMapper
attribute), 44

depth_of_swaps (pro-
jectq.cengines._twodmapper.GridMapper
attribute), 50

depth_of_swaps (projectq.cengines.GridMapper
attribute), 56

depth_of_swaps (projectq.cengines.LinearMapper at-
tribute), 59

DeviceNotHandledError, 19, 30
DeviceOfflineError, 19, 30

158 Index

projectq Documentation, Release 0.7.2

DeviceTooSmall, 19, 30
dirty_qubits (projectq.cengines._main.MainEngine

attribute), 45
dirty_qubits (projectq.cengines.MainEngine at-

tribute), 61
DirtyQubitTag (class in projectq.meta), 90
DirtyQubitTag (class in projectq.meta._dirtyqubit), 85
DivideQuantumGate (class in pro-

jectq.libs.math._gates), 67
draw() (projectq.backends.CircuitDrawerMatplotlib

method), 27
drop_engine_after() (in module projectq.meta), 92
drop_engine_after() (in module projectq.meta._util),

87
DummyEngine (class in projectq.cengines), 55
DummyEngine (class in projectq.cengines._testengine), 49

E
end_compute() (projectq.meta._compute.ComputeEngine

method), 82
engine (projectq.ops._command.Command attribute), 99
engine (projectq.ops._command.Command property),

100
engine (projectq.ops.Command attribute), 118
engine (projectq.ops.Command property), 119
engine (projectq.types._qubit.Qureg property), 150
engine (projectq.types.Qureg property), 151
Entangle (in module projectq.ops._gates), 102
EntangleGate (class in projectq.ops), 121
EntangleGate (class in projectq.ops._gates), 102

F
FastForwardingGate (class in projectq.ops), 121
FastForwardingGate (class in projectq.ops._basics),

97
FlipBits (class in projectq.ops), 121
FlipBits (class in projectq.ops._gates), 102
flush() (projectq.cengines._main.MainEngine method),

46
flush() (projectq.cengines.MainEngine method), 62
FlushGate (class in projectq.ops), 122
FlushGate (class in projectq.ops._gates), 102
ForwarderEngine (class in projectq.cengines), 55
ForwarderEngine (class in projectq.cengines._basics),

42
func_algorithm (in module pro-

jectq.setups.decompositions.amplitudeamplification),
136

func_algorithm (projectq.ops._qaagate.QAA at-
tribute), 108

func_algorithm (projectq.ops.QAA attribute), 124
func_oracle (in module pro-

jectq.setups.decompositions.amplitudeamplification),
136

func_oracle (projectq.ops._qaagate.QAA attribute),
108

func_oracle (projectq.ops.QAA attribute), 124

G
gate (projectq.ops._command.Command attribute), 99
gate (projectq.ops.Command attribute), 118
gate_class_counts (pro-

jectq.backends._resource.ResourceCounter
attribute), 21

gate_class_counts (pro-
jectq.backends.ResourceCounter attribute),
33

gate_counts (projectq.backends._resource.ResourceCounter
attribute), 21

gate_counts (projectq.backends.ResourceCounter at-
tribute), 33

generate_command() (projectq.ops._basics.BasicGate
method), 95

generate_command() (projectq.ops.BasicGate
method), 114

get_amplitude() (projectq.backends.Simulator
method), 35

get_control_count() (in module projectq.meta), 92
get_control_count() (in module pro-

jectq.meta._control), 84
get_engine_list() (in module projectq.setups.aqt),

145
get_engine_list() (in module pro-

jectq.setups.default), 145
get_engine_list() (in module projectq.setups.grid),

145
get_engine_list() (in module projectq.setups.ibm),

146
get_engine_list() (in module projectq.setups.ionq),

146
get_engine_list() (in module projectq.setups.linear),

147
get_engine_list() (in module pro-

jectq.setups.restrictedgateset), 148
get_engine_list() (in module pro-

jectq.setups.trapped_ion_decomposer), 149
get_engine_list_linear_grid_base() (in module

projectq.setups._utils), 144
get_expectation_value() (pro-

jectq.backends.Simulator method), 36
get_inverse() (in module projectq.ops), 133
get_inverse() (in module projectq.ops._metagates),

106
get_inverse() (projectq.libs.math._gates.AddConstant

method), 66
get_inverse() (projectq.libs.math._gates.AddConstantModN

method), 66

Index 159

projectq Documentation, Release 0.7.2

get_inverse() (projectq.libs.math._gates.AddQuantumGate
method), 67

get_inverse() (projectq.libs.math._gates.ComparatorQuantumGate
method), 67

get_inverse() (projectq.libs.math._gates.DivideQuantumGate
method), 68

get_inverse() (projectq.libs.math._gates.MultiplyQuantumGate
method), 68

get_inverse() (projectq.libs.math._gates.SubtractQuantumGate
method), 69

get_inverse() (projectq.libs.math.AddConstant
method), 74

get_inverse() (projectq.libs.math.AddConstantModN
method), 75

get_inverse() (projectq.ops._basics.BasicGate
method), 95

get_inverse() (projectq.ops._basics.BasicPhaseGate
method), 96

get_inverse() (projectq.ops._basics.BasicRotationGate
method), 97

get_inverse() (projectq.ops._basics.MatrixGate
method), 98

get_inverse() (projectq.ops._basics.SelfInverseGate
method), 98

get_inverse() (projectq.ops._command.Command
method), 100

get_inverse() (projectq.ops._gates.AllocateDirtyQubitGate
method), 101

get_inverse() (projectq.ops._gates.AllocateQubitGate
method), 101

get_inverse() (projectq.ops._gates.BarrierGate
method), 101

get_inverse() (projectq.ops._gates.DeallocateQubitGate
method), 101

get_inverse() (projectq.ops._metagates.ControlledGate
method), 106

get_inverse() (projectq.ops._metagates.DaggeredGate
method), 106

get_inverse() (projectq.ops._metagates.Tensor
method), 106

get_inverse() (projectq.ops._qubit_operator.QubitOperator
method), 109

get_inverse() (projectq.ops._time_evolution.TimeEvolution
method), 111

get_inverse() (projectq.ops._uniformly_controlled_rotation.UniformlyControlledRy
method), 112

get_inverse() (projectq.ops._uniformly_controlled_rotation.UniformlyControlledRz
method), 112

get_inverse() (projectq.ops.AllocateDirtyQubitGate
method), 113

get_inverse() (projectq.ops.AllocateQubitGate
method), 113

get_inverse() (projectq.ops.BarrierGate method), 113
get_inverse() (projectq.ops.BasicGate method), 114

get_inverse() (projectq.ops.BasicPhaseGate method),
116

get_inverse() (projectq.ops.BasicRotationGate
method), 117

get_inverse() (projectq.ops.Command method), 119
get_inverse() (projectq.ops.ControlledGate method),

120
get_inverse() (projectq.ops.DaggeredGate method),

121
get_inverse() (projectq.ops.DeallocateQubitGate

method), 121
get_inverse() (projectq.ops.MatrixGate method), 123
get_inverse() (projectq.ops.QubitOperator method),

127
get_inverse() (projectq.ops.SelfInverseGate method),

128
get_inverse() (projectq.ops.Tensor method), 130
get_inverse() (projectq.ops.TimeEvolution method),

131
get_inverse() (projectq.ops.UniformlyControlledRy

method), 132
get_inverse() (projectq.ops.UniformlyControlledRz

method), 133
get_latex() (projectq.backends.CircuitDrawer

method), 26
get_math_function() (pro-

jectq.libs.math._gates.AddQuantumGate
method), 67

get_math_function() (pro-
jectq.ops._basics.BasicMathGate method),
96

get_math_function() (projectq.ops.BasicMathGate
method), 116

get_measurement_result() (pro-
jectq.cengines._main.MainEngine method),
46

get_measurement_result() (pro-
jectq.cengines.MainEngine method), 62

get_merged() (projectq.ops._basics.BasicGate
method), 95

get_merged() (projectq.ops._basics.BasicPhaseGate
method), 96

get_merged() (projectq.ops._basics.BasicRotationGate
method), 97

get_merged() (projectq.ops._command.Command
method), 100

get_merged() (projectq.ops._qubit_operator.QubitOperator
method), 109

get_merged() (projectq.ops._time_evolution.TimeEvolution
method), 111

get_merged() (projectq.ops._uniformly_controlled_rotation.UniformlyControlledRy
method), 112

get_merged() (projectq.ops._uniformly_controlled_rotation.UniformlyControlledRz
method), 112

160 Index

projectq Documentation, Release 0.7.2

get_merged() (projectq.ops.BasicGate method), 114
get_merged() (projectq.ops.BasicPhaseGate method),

116
get_merged() (projectq.ops.BasicRotationGate

method), 117
get_merged() (projectq.ops.Command method), 119
get_merged() (projectq.ops.QubitOperator method),

127
get_merged() (projectq.ops.TimeEvolution method),

131
get_merged() (projectq.ops.UniformlyControlledRy

method), 132
get_merged() (projectq.ops.UniformlyControlledRz

method), 133
get_new_qubit_id() (pro-

jectq.cengines._main.MainEngine method),
46

get_new_qubit_id() (projectq.cengines.MainEngine
method), 62

get_probabilities() (pro-
jectq.backends._ionq.IonQBackend method),
20

get_probabilities() (pro-
jectq.backends.AQTBackend method), 24

get_probabilities() (pro-
jectq.backends.IBMBackend method), 31

get_probabilities() (pro-
jectq.backends.IonQBackend method), 32

get_probability() (pro-
jectq.backends._ionq.IonQBackend method),
20

get_probability() (projectq.backends.IonQBackend
method), 33

get_probability() (projectq.backends.Simulator
method), 36

get_qasm() (projectq.backends.IBMBackend method),
31

GridMapper (class in projectq.cengines), 56
GridMapper (class in projectq.cengines._twodmapper),

49

H
H (in module projectq.ops._gates), 102
hamiltonian (projectq.ops._time_evolution.TimeEvolution

attribute), 111
hamiltonian (projectq.ops.TimeEvolution attribute),

130
has_negative_control() (in module projectq.meta),

92
has_negative_control() (in module pro-

jectq.meta._control), 84
HGate (class in projectq.ops), 122
HGate (class in projectq.ops._gates), 102

high_level_gates() (in module pro-
jectq.setups._utils), 144

history (projectq.backends._unitary.UnitarySimulator
attribute), 22

history (projectq.backends._unitary.UnitarySimulator
property), 23

history (projectq.backends.UnitarySimulator attribute),
37

history (projectq.backends.UnitarySimulator property),
38

I
IBM5QubitMapper (class in projectq.cengines), 57
IBM5QubitMapper (class in pro-

jectq.cengines._ibm5qubitmapper), 43
IBMBackend (class in projectq.backends), 31
IncompatibleControlState, 101, 122
insert_engine() (in module projectq.meta), 92
insert_engine() (in module projectq.meta._util), 87
InstructionFilter (class in projectq.cengines), 58
interchangeable_qubit_indices (pro-

jectq.ops._command.Command property),
100

interchangeable_qubit_indices (pro-
jectq.ops.Command property), 119

inv_mod_N() (in module pro-
jectq.libs.math._constantmath), 65

InvalidCommandError, 19
inverse_add_quantum_carry() (in module pro-

jectq.libs.math._quantummath), 70
inverse_quantum_division() (in module pro-

jectq.libs.math._quantummath), 70
inverse_quantum_multiplication() (in module

projectq.libs.math._quantummath), 71
IonQBackend (class in projectq.backends), 32
IonQBackend (class in projectq.backends._ionq), 20
is_available() (pro-

jectq.backends._ionq.IonQBackend method),
20

is_available() (pro-
jectq.backends._printer.CommandPrinter
method), 21

is_available() (pro-
jectq.backends._resource.ResourceCounter
method), 22

is_available() (pro-
jectq.backends._unitary.UnitarySimulator
method), 23

is_available() (projectq.backends.AQTBackend
method), 25

is_available() (projectq.backends.CircuitDrawer
method), 27

is_available() (pro-
jectq.backends.CircuitDrawerMatplotlib

Index 161

projectq Documentation, Release 0.7.2

method), 28
is_available() (pro-

jectq.backends.ClassicalSimulator method),
29

is_available() (projectq.backends.CommandPrinter
method), 30

is_available() (projectq.backends.IBMBackend
method), 32

is_available() (projectq.backends.IonQBackend
method), 33

is_available() (projectq.backends.ResourceCounter
method), 34

is_available() (projectq.backends.Simulator
method), 37

is_available() (projectq.backends.UnitarySimulator
method), 38

is_available() (pro-
jectq.cengines._basics.BasicEngine method),
41

is_available() (pro-
jectq.cengines._ibm5qubitmapper.IBM5QubitMapper
method), 43

is_available() (pro-
jectq.cengines._linearmapper.LinearMapper
method), 44

is_available() (pro-
jectq.cengines._swapandcnotflipper.SwapAndCNOTFlipper
method), 48

is_available() (pro-
jectq.cengines._testengine.CompareEngine
method), 49

is_available() (pro-
jectq.cengines._testengine.DummyEngine
method), 49

is_available() (pro-
jectq.cengines._twodmapper.GridMapper
method), 50

is_available() (projectq.cengines.BasicEngine
method), 52

is_available() (projectq.cengines.CompareEngine
method), 54

is_available() (projectq.cengines.DummyEngine
method), 55

is_available() (projectq.cengines.GridMapper
method), 57

is_available() (projectq.cengines.IBM5QubitMapper
method), 58

is_available() (projectq.cengines.InstructionFilter
method), 58

is_available() (projectq.cengines.LinearMapper
method), 59

is_available() (pro-
jectq.cengines.SwapAndCNOTFlipper
method), 64

is_identity() (in module projectq.ops), 133
is_identity() (in module projectq.ops._metagates),

107
is_identity() (projectq.ops._basics.BasicGate

method), 95
is_identity() (projectq.ops._basics.BasicRotationGate

method), 97
is_identity() (projectq.ops._command.Command

method), 100
is_identity() (projectq.ops.BasicGate method), 114
is_identity() (projectq.ops.BasicRotationGate

method), 117
is_identity() (projectq.ops.Command method), 119
is_last_engine (pro-

jectq.cengines._basics.BasicEngine attribute),
41

is_last_engine (projectq.cengines.BasicEngine
attribute), 52

is_meta_tag_supported() (pro-
jectq.cengines._basics.BasicEngine method),
42

is_meta_tag_supported() (pro-
jectq.cengines.BasicEngine method), 52

isclose() (projectq.ops._qubit_operator.QubitOperator
method), 110

isclose() (projectq.ops.QubitOperator method), 127

J
JobSubmissionError, 19

L
LastEngineException, 42, 58
LinearMapper (class in projectq.cengines), 58
LinearMapper (class in pro-

jectq.cengines._linearmapper), 43
list2set() (in module projectq.setups.ibm), 146
LocalOptimizer (class in projectq.cengines), 60
LocalOptimizer (class in projectq.cengines._optimize),

47
logical_qubit_id (pro-

jectq.meta._logicalqubit.LogicalQubitIDTag
attribute), 86

logical_qubit_id (projectq.meta.LogicalQubitIDTag
attribute), 90

LogicalQubitIDTag (class in projectq.meta), 90
LogicalQubitIDTag (class in pro-

jectq.meta._logicalqubit), 86
Loop (class in projectq.meta), 90
Loop (class in projectq.meta._loop), 86
loop_tag_id (projectq.meta._loop.LoopTag attribute),

87
loop_tag_id (projectq.meta.LoopTag attribute), 91
LoopEngine (class in projectq.meta._loop), 87
LoopTag (class in projectq.meta), 91

162 Index

projectq Documentation, Release 0.7.2

LoopTag (class in projectq.meta._loop), 87

M
main_engine (projectq.cengines._basics.BasicEngine

attribute), 41
main_engine (projectq.cengines._main.MainEngine at-

tribute), 45
main_engine (projectq.cengines.BasicEngine attribute),

52
main_engine (projectq.cengines.MainEngine attribute),

61
MainEngine (class in projectq.cengines), 60
MainEngine (class in projectq.cengines._main), 45
make_tuple_of_qureg() (pro-

jectq.ops._basics.BasicGate static method),
95

make_tuple_of_qureg() (projectq.ops.BasicGate
static method), 114

ManualMapper (class in projectq.cengines), 63
ManualMapper (class in pro-

jectq.cengines._manualmapper), 47
map (projectq.cengines._manualmapper.ManualMapper

attribute), 47
map (projectq.cengines.ManualMapper attribute), 63
mapper (projectq.cengines._main.MainEngine attribute),

45
mapper (projectq.cengines.MainEngine attribute), 61
matrix (projectq.ops._basics.MatrixGate property), 98
matrix (projectq.ops._gates.HGate property), 102
matrix (projectq.ops._gates.Ph property), 102
matrix (projectq.ops._gates.R property), 102
matrix (projectq.ops._gates.Rx property), 103
matrix (projectq.ops._gates.Rxx property), 103
matrix (projectq.ops._gates.Ry property), 103
matrix (projectq.ops._gates.Ryy property), 103
matrix (projectq.ops._gates.Rz property), 103
matrix (projectq.ops._gates.Rzz property), 103
matrix (projectq.ops._gates.SGate property), 103
matrix (projectq.ops._gates.SqrtSwapGate property),

103
matrix (projectq.ops._gates.SqrtXGate property), 104
matrix (projectq.ops._gates.SwapGate property), 104
matrix (projectq.ops._gates.TGate property), 104
matrix (projectq.ops._gates.XGate property), 104
matrix (projectq.ops._gates.YGate property), 104
matrix (projectq.ops._gates.ZGate property), 105
matrix (projectq.ops.HGate property), 122
matrix (projectq.ops.MatrixGate property), 123
matrix (projectq.ops.Ph property), 123
matrix (projectq.ops.R property), 127
matrix (projectq.ops.Rx property), 127
matrix (projectq.ops.Rxx property), 128
matrix (projectq.ops.Ry property), 128
matrix (projectq.ops.Ryy property), 128

matrix (projectq.ops.Rz property), 128
matrix (projectq.ops.Rzz property), 128
matrix (projectq.ops.SGate property), 128
matrix (projectq.ops.SqrtSwapGate property), 128
matrix (projectq.ops.SqrtXGate property), 129
matrix (projectq.ops.SwapGate property), 129
matrix (projectq.ops.TGate property), 129
matrix (projectq.ops.XGate property), 133
matrix (projectq.ops.YGate property), 133
matrix (projectq.ops.ZGate property), 133
MatrixGate (class in projectq.ops), 122
MatrixGate (class in projectq.ops._basics), 98
max_width (projectq.backends._resource.ResourceCounter

attribute), 21
max_width (projectq.backends.ResourceCounter at-

tribute), 33
Measure (in module projectq.ops._gates), 102
measure_qubits() (pro-

jectq.backends._unitary.UnitarySimulator
method), 23

measure_qubits() (pro-
jectq.backends.UnitarySimulator method),
38

MeasureGate (class in projectq.ops), 123
MeasureGate (class in projectq.ops._gates), 102
MidCircuitMeasurementError, 19
module

projectq.backends, 24
projectq.backends._aqt, 19
projectq.backends._awsbraket, 19
projectq.backends._circuits, 19
projectq.backends._exceptions, 19
projectq.backends._ibm, 19
projectq.backends._ionq, 20
projectq.backends._printer, 21
projectq.backends._resource, 21
projectq.backends._sim, 22
projectq.backends._unitary, 22
projectq.cengines, 51
projectq.cengines._basicmapper, 40
projectq.cengines._basics, 41
projectq.cengines._cmdmodifier, 42
projectq.cengines._ibm5qubitmapper, 43
projectq.cengines._linearmapper, 43
projectq.cengines._main, 45
projectq.cengines._manualmapper, 47
projectq.cengines._optimize, 47
projectq.cengines._replacer, 48
projectq.cengines._swapandcnotflipper, 48
projectq.cengines._tagremover, 48
projectq.cengines._testengine, 49
projectq.cengines._twodmapper, 49
projectq.libs, 80
projectq.libs.hist, 80

Index 163

projectq Documentation, Release 0.7.2

projectq.libs.math, 74
projectq.libs.math._constantmath, 65
projectq.libs.math._default_rules, 66
projectq.libs.math._gates, 66
projectq.libs.math._quantummath, 69
projectq.libs.revkit, 78
projectq.libs.revkit._control_function,

77
projectq.libs.revkit._permutation, 77
projectq.libs.revkit._phase, 78
projectq.libs.revkit._utils, 78
projectq.meta, 88
projectq.meta._compute, 81
projectq.meta._control, 84
projectq.meta._dagger, 85
projectq.meta._dirtyqubit, 85
projectq.meta._exceptions, 86
projectq.meta._logicalqubit, 86
projectq.meta._loop, 86
projectq.meta._util, 87
projectq.ops, 113
projectq.ops._basics, 94
projectq.ops._command, 99
projectq.ops._gates, 101
projectq.ops._metagates, 105
projectq.ops._qaagate, 107
projectq.ops._qftgate, 108
projectq.ops._qpegate, 108
projectq.ops._qubit_operator, 109
projectq.ops._shortcuts, 110
projectq.ops._state_prep, 110
projectq.ops._time_evolution, 110
projectq.ops._uniformly_controlled_rotation,

111
projectq.setups, 149
projectq.setups._utils, 144
projectq.setups.aqt, 145
projectq.setups.decompositions, 143
projectq.setups.decompositions.amplitudeamplification,

136
projectq.setups.decompositions.arb1qubit2rzandry,

137
projectq.setups.decompositions.barrier,

137
projectq.setups.decompositions.carb1qubit2cnotrzandry,

137
projectq.setups.decompositions.cnot2cz,

137
projectq.setups.decompositions.cnot2rxx,

138
projectq.setups.decompositions.cnu2toffoliandcu,

138
projectq.setups.decompositions.controlstate,

138

projectq.setups.decompositions.crz2cxandrz,
138

projectq.setups.decompositions.entangle,
138

projectq.setups.decompositions.globalphase,
139

projectq.setups.decompositions.h2rx, 139
projectq.setups.decompositions.ph2r, 139
projectq.setups.decompositions.phaseestimation,

139
projectq.setups.decompositions.qft2crandhadamard,

141
projectq.setups.decompositions.qubitop2onequbit,

141
projectq.setups.decompositions.r2rzandph,

141
projectq.setups.decompositions.rx2rz, 141
projectq.setups.decompositions.ry2rz, 142
projectq.setups.decompositions.rz2rx, 142
projectq.setups.decompositions.sqrtswap2cnot,

142
projectq.setups.decompositions.stateprep2cnot,

142
projectq.setups.decompositions.swap2cnot,

142
projectq.setups.decompositions.time_evolution,

143
projectq.setups.decompositions.toffoli2cnotandtgate,

143
projectq.setups.decompositions.uniformlycontrolledr2cnot,

143
projectq.setups.default, 145
projectq.setups.grid, 145
projectq.setups.ibm, 146
projectq.setups.ionq, 146
projectq.setups.linear, 147
projectq.setups.restrictedgateset, 148
projectq.setups.trapped_ion_decomposer,

149
projectq.types, 151
projectq.types._qubit, 150

mul_by_constant_modN() (in module pro-
jectq.libs.math._constantmath), 65

MultiplyByConstantModN (class in pro-
jectq.libs.math), 75

MultiplyByConstantModN (class in pro-
jectq.libs.math._gates), 68

MultiplyQuantumGate (class in pro-
jectq.libs.math._gates), 68

N
n_engines (projectq.cengines._main.MainEngine

attribute), 45
n_engines (projectq.cengines.MainEngine attribute), 61

164 Index

projectq Documentation, Release 0.7.2

n_engines_max (projectq.cengines._main.MainEngine
attribute), 46

n_engines_max (projectq.cengines.MainEngine at-
tribute), 61

next_engine (projectq.cengines._basics.BasicEngine
attribute), 41

next_engine (projectq.cengines._main.MainEngine at-
tribute), 45

next_engine (projectq.cengines.BasicEngine attribute),
51

next_engine (projectq.cengines.MainEngine attribute),
60

NoComputeSectionError, 83
NOT (in module projectq.ops._gates), 102
NotHermitianOperatorError, 110
NotInvertible, 98, 123
NotMergeable, 98, 123
NotYetMeasuredError, 47, 63
num_columns (projectq.cengines._twodmapper.GridMapper

attribute), 50
num_columns (projectq.cengines.GridMapper attribute),

56
num_mappings (projectq.cengines._linearmapper.LinearMapper

attribute), 44
num_mappings (projectq.cengines._twodmapper.GridMapper

attribute), 50
num_mappings (projectq.cengines.GridMapper at-

tribute), 56
num_mappings (projectq.cengines.LinearMapper at-

tribute), 59
num_of_swaps_per_mapping (pro-

jectq.cengines._linearmapper.LinearMapper
attribute), 44

num_of_swaps_per_mapping (pro-
jectq.cengines._twodmapper.GridMapper
attribute), 50

num_of_swaps_per_mapping (pro-
jectq.cengines.GridMapper attribute), 56

num_of_swaps_per_mapping (pro-
jectq.cengines.LinearMapper attribute),
59

num_qubits (projectq.cengines._twodmapper.GridMapper
attribute), 50

num_qubits (projectq.cengines.GridMapper attribute),
56

num_rows (projectq.cengines._twodmapper.GridMapper
attribute), 50

num_rows (projectq.cengines.GridMapper attribute), 56

O
One (projectq.ops._command.CtrlAll attribute), 100
One (projectq.ops.CtrlAll attribute), 120
one_and_two_qubit_gates() (in module pro-

jectq.setups._utils), 144

P
PermutationOracle (class in projectq.libs.revkit), 79
PermutationOracle (class in pro-

jectq.libs.revkit._permutation), 77
Ph (class in projectq.ops), 123
Ph (class in projectq.ops._gates), 102
PhaseOracle (class in projectq.libs.revkit), 79
PhaseOracle (class in projectq.libs.revkit._phase), 78
projectq.backends

module, 24
projectq.backends._aqt

module, 19
projectq.backends._awsbraket

module, 19
projectq.backends._circuits

module, 19
projectq.backends._exceptions

module, 19
projectq.backends._ibm

module, 19
projectq.backends._ionq

module, 20
projectq.backends._printer

module, 21
projectq.backends._resource

module, 21
projectq.backends._sim

module, 22
projectq.backends._unitary

module, 22
projectq.cengines

module, 51
projectq.cengines._basicmapper

module, 40
projectq.cengines._basics

module, 41
projectq.cengines._cmdmodifier

module, 42
projectq.cengines._ibm5qubitmapper

module, 43
projectq.cengines._linearmapper

module, 43
projectq.cengines._main

module, 45
projectq.cengines._manualmapper

module, 47
projectq.cengines._optimize

module, 47
projectq.cengines._replacer

module, 48
projectq.cengines._swapandcnotflipper

module, 48
projectq.cengines._tagremover

module, 48

Index 165

projectq Documentation, Release 0.7.2

projectq.cengines._testengine
module, 49

projectq.cengines._twodmapper
module, 49

projectq.libs
module, 80

projectq.libs.hist
module, 80

projectq.libs.math
module, 74

projectq.libs.math._constantmath
module, 65

projectq.libs.math._default_rules
module, 66

projectq.libs.math._gates
module, 66

projectq.libs.math._quantummath
module, 69

projectq.libs.revkit
module, 78

projectq.libs.revkit._control_function
module, 77

projectq.libs.revkit._permutation
module, 77

projectq.libs.revkit._phase
module, 78

projectq.libs.revkit._utils
module, 78

projectq.meta
module, 88

projectq.meta._compute
module, 81

projectq.meta._control
module, 84

projectq.meta._dagger
module, 85

projectq.meta._dirtyqubit
module, 85

projectq.meta._exceptions
module, 86

projectq.meta._logicalqubit
module, 86

projectq.meta._loop
module, 86

projectq.meta._util
module, 87

projectq.ops
module, 113

projectq.ops._basics
module, 94

projectq.ops._command
module, 99

projectq.ops._gates
module, 101

projectq.ops._metagates
module, 105

projectq.ops._qaagate
module, 107

projectq.ops._qftgate
module, 108

projectq.ops._qpegate
module, 108

projectq.ops._qubit_operator
module, 109

projectq.ops._shortcuts
module, 110

projectq.ops._state_prep
module, 110

projectq.ops._time_evolution
module, 110

projectq.ops._uniformly_controlled_rotation
module, 111

projectq.setups
module, 149

projectq.setups._utils
module, 144

projectq.setups.aqt
module, 145

projectq.setups.decompositions
module, 143

projectq.setups.decompositions.amplitudeamplification
module, 136

projectq.setups.decompositions.arb1qubit2rzandry
module, 137

projectq.setups.decompositions.barrier
module, 137

projectq.setups.decompositions.carb1qubit2cnotrzandry
module, 137

projectq.setups.decompositions.cnot2cz
module, 137

projectq.setups.decompositions.cnot2rxx
module, 138

projectq.setups.decompositions.cnu2toffoliandcu
module, 138

projectq.setups.decompositions.controlstate
module, 138

projectq.setups.decompositions.crz2cxandrz
module, 138

projectq.setups.decompositions.entangle
module, 138

projectq.setups.decompositions.globalphase
module, 139

projectq.setups.decompositions.h2rx
module, 139

projectq.setups.decompositions.ph2r
module, 139

projectq.setups.decompositions.phaseestimation
module, 139

166 Index

projectq Documentation, Release 0.7.2

projectq.setups.decompositions.qft2crandhadamard
module, 141

projectq.setups.decompositions.qubitop2onequbit
module, 141

projectq.setups.decompositions.r2rzandph
module, 141

projectq.setups.decompositions.rx2rz
module, 141

projectq.setups.decompositions.ry2rz
module, 142

projectq.setups.decompositions.rz2rx
module, 142

projectq.setups.decompositions.sqrtswap2cnot
module, 142

projectq.setups.decompositions.stateprep2cnot
module, 142

projectq.setups.decompositions.swap2cnot
module, 142

projectq.setups.decompositions.time_evolution
module, 143

projectq.setups.decompositions.toffoli2cnotandtgate
module, 143

projectq.setups.decompositions.uniformlycontrolledr2cnot
module, 143

projectq.setups.default
module, 145

projectq.setups.grid
module, 145

projectq.setups.ibm
module, 146

projectq.setups.ionq
module, 146

projectq.setups.linear
module, 147

projectq.setups.restrictedgateset
module, 148

projectq.setups.trapped_ion_decomposer
module, 149

projectq.types
module, 151

projectq.types._qubit
module, 150

Q
QAA (class in projectq.ops), 123
QAA (class in projectq.ops._qaagate), 107
qaa_ancilla (in module pro-

jectq.setups.decompositions.amplitudeamplification),
136

qaa_ancilla (projectq.ops._qaagate.QAA attribute),
108

qaa_ancilla (projectq.ops.QAA attribute), 124
QFT (in module projectq.ops._qftgate), 108
QFTGate (class in projectq.ops), 124

QFTGate (class in projectq.ops._qftgate), 108
QPE (class in projectq.ops), 124
QPE (class in projectq.ops._qpegate), 108
quantum_conditional_add() (in module pro-

jectq.libs.math._quantummath), 71
quantum_conditional_add_carry() (in module pro-

jectq.libs.math._quantummath), 72
quantum_division() (in module pro-

jectq.libs.math._quantummath), 72
quantum_multiplication() (in module pro-

jectq.libs.math._quantummath), 73
Qubit (class in projectq.types), 151
Qubit (class in projectq.types._qubit), 150
QubitManagementError, 86
QubitOperator (class in projectq.ops), 125
QubitOperator (class in projectq.ops._qubit_operator),

109
QubitOperatorError, 110
qubits (projectq.ops._command.Command attribute), 99
qubits (projectq.ops._command.Command property),

100
qubits (projectq.ops.Command attribute), 118
qubits (projectq.ops.Command property), 119
Qureg (class in projectq.types), 151
Qureg (class in projectq.types._qubit), 150

R
R (class in projectq.ops), 127
R (class in projectq.ops._gates), 102
read_bit() (projectq.backends.ClassicalSimulator

method), 29
read_register() (pro-

jectq.backends.ClassicalSimulator method),
29

receive() (projectq.backends._ionq.IonQBackend
method), 20

receive() (projectq.backends._printer.CommandPrinter
method), 21

receive() (projectq.backends._resource.ResourceCounter
method), 22

receive() (projectq.backends._unitary.UnitarySimulator
method), 23

receive() (projectq.backends.AQTBackend method), 25
receive() (projectq.backends.CircuitDrawer method),

27
receive() (projectq.backends.CircuitDrawerMatplotlib

method), 28
receive() (projectq.backends.ClassicalSimulator

method), 29
receive() (projectq.backends.CommandPrinter

method), 30
receive() (projectq.backends.IBMBackend method), 32
receive() (projectq.backends.IonQBackend method),

33

Index 167

projectq Documentation, Release 0.7.2

receive() (projectq.backends.ResourceCounter
method), 34

receive() (projectq.backends.Simulator method), 37
receive() (projectq.backends.UnitarySimulator

method), 38
receive() (projectq.cengines._basicmapper.BasicMapperEngine

method), 40
receive() (projectq.cengines._basics.ForwarderEngine

method), 42
receive() (projectq.cengines._cmdmodifier.CommandModifier

method), 42
receive() (projectq.cengines._ibm5qubitmapper.IBM5QubitMapper

method), 43
receive() (projectq.cengines._linearmapper.LinearMapper

method), 44
receive() (projectq.cengines._main.MainEngine

method), 46
receive() (projectq.cengines._manualmapper.ManualMapper

method), 47
receive() (projectq.cengines._optimize.LocalOptimizer

method), 47
receive() (projectq.cengines._swapandcnotflipper.SwapAndCNOTFlipper

method), 48
receive() (projectq.cengines._tagremover.TagRemover

method), 48
receive() (projectq.cengines._testengine.CompareEngine

method), 49
receive() (projectq.cengines._testengine.DummyEngine

method), 49
receive() (projectq.cengines._twodmapper.GridMapper

method), 50
receive() (projectq.cengines.AutoReplacer method), 51
receive() (projectq.cengines.BasicMapperEngine

method), 53
receive() (projectq.cengines.CommandModifier

method), 53
receive() (projectq.cengines.CompareEngine method),

54
receive() (projectq.cengines.DummyEngine method),

55
receive() (projectq.cengines.ForwarderEngine

method), 55
receive() (projectq.cengines.GridMapper method), 57
receive() (projectq.cengines.IBM5QubitMapper

method), 58
receive() (projectq.cengines.InstructionFilter method),

58
receive() (projectq.cengines.LinearMapper method),

59
receive() (projectq.cengines.LocalOptimizer method),

60
receive() (projectq.cengines.MainEngine method), 63
receive() (projectq.cengines.ManualMapper method),

63

receive() (projectq.cengines.SwapAndCNOTFlipper
method), 64

receive() (projectq.cengines.TagRemover method), 64
receive() (projectq.meta._compute.ComputeEngine

method), 82
receive() (projectq.meta._compute.UncomputeEngine

method), 83
receive() (projectq.meta._control.ControlEngine

method), 84
receive() (projectq.meta._dagger.DaggerEngine

method), 85
receive() (projectq.meta._loop.LoopEngine method),

87
RequestTimeoutError, 19
ResourceCounter (class in projectq.backends), 33
ResourceCounter (class in pro-

jectq.backends._resource), 21
return_new_mapping() (pro-

jectq.cengines._linearmapper.LinearMapper
static method), 44

return_new_mapping() (pro-
jectq.cengines.LinearMapper static method),
60

return_swap_depth() (in module projectq.cengines),
64

return_swap_depth() (in module pro-
jectq.cengines._linearmapper), 45

return_swaps() (pro-
jectq.cengines._twodmapper.GridMapper
method), 50

return_swaps() (projectq.cengines.GridMapper
method), 57

run() (projectq.meta._dagger.DaggerEngine method),
85

run() (projectq.meta._loop.LoopEngine method), 87
run_uncompute() (pro-

jectq.meta._compute.ComputeEngine method),
83

Rx (class in projectq.ops), 127
Rx (class in projectq.ops._gates), 102
Rxx (class in projectq.ops), 128
Rxx (class in projectq.ops._gates), 103
Ry (class in projectq.ops), 128
Ry (class in projectq.ops._gates), 103
Ryy (class in projectq.ops), 128
Ryy (class in projectq.ops._gates), 103
Rz (class in projectq.ops), 128
Rz (class in projectq.ops._gates), 103
Rzz (class in projectq.ops), 128
Rzz (class in projectq.ops._gates), 103

S
S (in module projectq.ops._gates), 103
Sdag (in module projectq.ops._gates), 103

168 Index

projectq Documentation, Release 0.7.2

Sdagger (in module projectq.ops._gates), 103
SelfInverseGate (class in projectq.ops), 128
SelfInverseGate (class in projectq.ops._basics), 98
send() (projectq.cengines._basics.BasicEngine method),

42
send() (projectq.cengines._main.MainEngine method),

46
send() (projectq.cengines.BasicEngine method), 53
send() (projectq.cengines.MainEngine method), 63
set_measurement_result() (pro-

jectq.cengines._main.MainEngine method),
46

set_measurement_result() (pro-
jectq.cengines.MainEngine method), 63

set_qubit_locations() (pro-
jectq.backends.CircuitDrawer method), 27

set_wavefunction() (projectq.backends.Simulator
method), 37

SGate (class in projectq.ops), 128
SGate (class in projectq.ops._gates), 103
Simulator (class in projectq.backends), 34
SqrtSwap (in module projectq.ops._gates), 103
SqrtSwapGate (class in projectq.ops), 128
SqrtSwapGate (class in projectq.ops._gates), 103
SqrtX (in module projectq.ops._gates), 104
SqrtXGate (class in projectq.ops), 129
SqrtXGate (class in projectq.ops._gates), 104
StatePreparation (class in projectq.ops), 129
StatePreparation (class in projectq.ops._state_prep),

110
storage (projectq.cengines._linearmapper.LinearMapper

attribute), 44
storage (projectq.cengines._twodmapper.GridMapper

attribute), 50
storage (projectq.cengines.GridMapper attribute), 56
storage (projectq.cengines.LinearMapper attribute), 59
SubConstant() (in module projectq.libs.math), 75
SubConstant() (in module projectq.libs.math._gates),

68
SubConstantModN() (in module projectq.libs.math), 76
SubConstantModN() (in module pro-

jectq.libs.math._gates), 69
subtract_quantum() (in module pro-

jectq.libs.math._quantummath), 73
SubtractQuantumGate (class in pro-

jectq.libs.math._gates), 69
Swap (in module projectq.ops._gates), 104
SwapAndCNOTFlipper (class in projectq.cengines), 63
SwapAndCNOTFlipper (class in pro-

jectq.cengines._swapandcnotflipper), 48
SwapGate (class in projectq.ops), 129
SwapGate (class in projectq.ops._gates), 104
system_qubits (in module pro-

jectq.setups.decompositions.amplitudeamplification),

136
system_qubits (projectq.ops._qaagate.QAA attribute),

108
system_qubits (projectq.ops.QAA attribute), 124

T
T (in module projectq.ops._gates), 104
TagRemover (class in projectq.cengines), 64
TagRemover (class in projectq.cengines._tagremover),

48
tags (projectq.ops._command.Command attribute), 99
tags (projectq.ops.Command attribute), 118
Tdag (in module projectq.ops._gates), 104
Tdagger (in module projectq.ops._gates), 104
Tensor (class in projectq.ops), 129
Tensor (class in projectq.ops._metagates), 106
terms (projectq.ops._qubit_operator.QubitOperator at-

tribute), 109
terms (projectq.ops.QubitOperator attribute), 125
tex_str() (projectq.ops._basics.BasicPhaseGate

method), 96
tex_str() (projectq.ops._basics.BasicRotationGate

method), 97
tex_str() (projectq.ops._gates.SqrtXGate method), 104
tex_str() (projectq.ops._metagates.DaggeredGate

method), 106
tex_str() (projectq.ops.BasicPhaseGate method), 116
tex_str() (projectq.ops.BasicRotationGate method),

117
tex_str() (projectq.ops.DaggeredGate method), 121
tex_str() (projectq.ops.SqrtXGate method), 129
TGate (class in projectq.ops), 129
TGate (class in projectq.ops._gates), 104
time (projectq.ops._time_evolution.TimeEvolution

attribute), 111
time (projectq.ops.TimeEvolution attribute), 130
TimeEvolution (class in projectq.ops), 130
TimeEvolution (class in projectq.ops._time_evolution),

110
to_string() (projectq.ops._basics.BasicGate method),

96
to_string() (projectq.ops._basics.BasicRotationGate

method), 97
to_string() (projectq.ops._command.Command

method), 100
to_string() (projectq.ops.BasicGate method), 115
to_string() (projectq.ops.BasicRotationGate method),

117
to_string() (projectq.ops.Command method), 119

U
Uncompute() (in module projectq.meta), 91
Uncompute() (in module projectq.meta._compute), 83
UncomputeEngine (class in projectq.meta._compute), 83

Index 169

projectq Documentation, Release 0.7.2

UncomputeTag (class in projectq.meta), 92
UncomputeTag (class in projectq.meta._compute), 83
UniformlyControlledRy (class in projectq.ops), 131
UniformlyControlledRy (class in pro-

jectq.ops._uniformly_controlled_rotation),
111

UniformlyControlledRz (class in projectq.ops), 132
UniformlyControlledRz (class in pro-

jectq.ops._uniformly_controlled_rotation),
112

unitary (in module pro-
jectq.setups.decompositions.phaseestimation),
140

unitary (projectq.backends._unitary.UnitarySimulator
attribute), 22

unitary (projectq.backends._unitary.UnitarySimulator
property), 23

unitary (projectq.backends.UnitarySimulator attribute),
37

unitary (projectq.backends.UnitarySimulator property),
39

UnitarySimulator (class in projectq.backends), 37
UnitarySimulator (class in pro-

jectq.backends._unitary), 22
UnsupportedEngineError, 47, 64

W
WeakQubitRef (class in projectq.types), 151
WeakQubitRef (class in projectq.types._qubit), 150
write_bit() (projectq.backends.ClassicalSimulator

method), 29
write_register() (pro-

jectq.backends.ClassicalSimulator method),
29

X
X (in module projectq.ops._gates), 104
XGate (class in projectq.ops), 133
XGate (class in projectq.ops._gates), 104

Y
Y (in module projectq.ops._gates), 104
YGate (class in projectq.ops), 133
YGate (class in projectq.ops._gates), 104

Z
Z (in module projectq.ops._gates), 104
Zero (projectq.ops._command.CtrlAll attribute), 100
Zero (projectq.ops.CtrlAll attribute), 120
ZGate (class in projectq.ops), 133
ZGate (class in projectq.ops._gates), 105

170 Index

	Tutorial
	Getting started
	Detailed instructions and OS-specific hints
	The ProjectQ syntax
	Basic quantum program

	Examples
	Quantum Random Numbers
	Quantum Teleportation
	Shor’s algorithm for factoring

	Code Documentation
	backends
	Submodules
	_aqt
	_awsbraket
	_circuits
	_exceptions
	_ibm
	_ionq
	_printer
	_resource
	_sim
	_unitary

	Module contents

	cengines
	Submodules
	_basicmapper
	_basics
	_cmdmodifier
	_ibm5qubitmapper
	_linearmapper
	_main
	_manualmapper
	_optimize
	_replacer
	_swapandcnotflipper
	_tagremover
	_testengine
	_twodmapper

	Module contents

	libs
	Subpackages
	libs.math
	Submodules
	_constantmath
	_default_rules
	_gates
	_quantummath

	Module contents

	libs.revkit
	Submodules
	_control_function
	_permutation
	_phase
	_utils

	Module contents

	Submodules
	hist

	Module contents

	meta
	Submodules
	_compute
	_control
	_dagger
	_dirtyqubit
	_exceptions
	_logicalqubit
	_loop
	_util

	Module contents

	ops
	Submodules
	_basics
	_command
	_gates
	_metagates
	_qaagate
	_qftgate
	_qpegate
	_qubit_operator
	_shortcuts
	_state_prep
	_time_evolution
	_uniformly_controlled_rotation

	Module contents

	setups
	Subpackages
	setups.decompositions
	Submodules
	amplitudeamplification
	arb1qubit2rzandry
	barrier
	carb1qubit2cnotrzandry
	cnot2cz
	cnot2rxx
	cnu2toffoliandcu
	controlstate
	crz2cxandrz
	entangle
	globalphase
	h2rx
	ph2r
	phaseestimation
	qft2crandhadamard
	qubitop2onequbit
	r2rzandph
	rx2rz
	ry2rz
	rz2rx
	sqrtswap2cnot
	stateprep2cnot
	swap2cnot
	time_evolution
	toffoli2cnotandtgate
	uniformlycontrolledr2cnot

	Module contents

	Submodules
	_utils
	aqt
	default
	grid
	ibm
	ionq
	linear
	restrictedgateset
	trapped_ion_decomposer

	Module contents

	types
	Submodules
	_qubit

	Module contents

	Python Module Index
	Index

